| 研究生: |
林建宏 LIN, JIAN-HUNG |
|---|---|
| 論文名稱: |
對流型的非線性薛丁格方程的奇異極限 Singular Limit of the Nonlinear Schrodinger Equation |
| 指導教授: |
林琦焜
Lin, Chi-Kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 20 |
| 中文關鍵詞: | 對流型的非線性薛丁格方程 |
| 外文關鍵詞: | the convective NLS equation |
| 相關次數: | 點閱:65 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇文章的目的是要去學習有關對流型的非線性薛丁格方程的奇異極限。首先,我們可以利用兩種不同的方法,去獲得對流型非線性薛丁格方程的一些守恆律。然後利用疊代的方法,在一段時間內,我們可以建立出古典解的局部存在性並且也可以把解的唯一性都證明完成。最後,我們去證明有關半古典解的極限。
The purpose of this paper is to the study of singular limit for the convective NLS equation.
First, we use two different methods to get conservation laws of the convective NLS equation.
And then the local existence in time of the classical solutions can be established via an iteration method and the uniqueness of the solution is also proved.
At last we prove the semiclassical limit of the solution.
[1] T. Colin and A. Soyeur, Some singular limits for
evolutionary Ginzburg-Landau equations, Asymptotic Analysis,
13(1996),361-372.
[2] B. Desjardins, C.-K. Lin and T. C. Tso,
Semiclassical limit of the derivative nonlinear Schr"odinger
equation, Math. Models Methods Appl. Sci., 10(2000), 261--285.
[3] B. Desjardins and C.-K. Lin,
On the semiclassical limit of the general modified NLS equation,
J. Math. Anal. Appl., 260(2001), 546--571.
[4] V. D. Djordjevic and L. G. Redekopp,
On two-dimensional packets of capillary-gravity waves, J. Fluid
Mech., 79(1977), 703--714.
[5] H. D. Doebner and G. A. Goldin,
On a general nonlinear Schr"odinger equation admitting diffusion
currents, Physics Letter A, 162(1992), 397--401.
[6] I. Gasser, C.-K. Lin and P. Markowich,
A review of dispersive limit of the (non)linear Schr"odinger-type
equation, Taiwanese J. of Mathematics, 4(2000), 501--529.
[7] L. Gill,
Vector order parameter for an unpolarized laser and its vectorial
topological defects, Physical Review Letters, 70(1993), 162--165.
[8] E. Grenier,
Semiclassical limit of the nonlinear Schr"odinger equation in
small time, Proc. Amer. Math. Soc., 126(1998), 523--530.
[9] M. Haelterman and A. P. Sheppard,
Bifurcations of the dark soliton and polarization domain walls in
nonlinear dispersive media, Physical Review E, 49(1994),
4512--4518.
[10] S. Jin, C. D. Levermore and D. W. McLaughlin,
The semiclassical limit of the defocusing NLS hierarchy, Comm.
Pure Appl. Math., 52(1999), 613--654.
[11] A. J"ungel and S. Wang, Convergence of nonlinear
Schr"odinger-Poisson systems to the compressible Euler equations.
Comm. Partial Differential Equations 28(2003), 1005--1022.
[12] T. Kato,
The Cauchy problem for quasilinear symmetric hyperbolic systems,
Arch. Rational Mech. Anal., 58(19??), 181--205.
[13] C. Kenig, G. Ponce and L. Vega,
Oscillatory integrals and regularity of dispersive equations,
Indiana Univ. Math. J., 40(1991), 33--67.
[14] S. Klainerman and A. Majda,
Singular limits and quasilinear systems with large parameter and
the incompressible limit of compressible fluids, Comm. Pure and
Appl. Math., 34(1981), 481--524.
[15] P. Laurencot,
On a nonlinear Schr"odinger equation arising in the theory of
water wave, Nonlinear Analysis, Theory, Methods & Applications,
24(1995), 509--527.
[16] J.-H. Lee and C.-K. Lin,
The behavior of solutions of NLS equation of derivative type in
the semiclassical limit, Chaos, Solitons & Fractals, 13(2002),
1475--1492.
[17] J.-H. Lee, C.-K. Lin and Oktay K. Pashaev,
Shock waves, Chiral solitons and semiclassical limit of
one-dimensional anyons, Chaos, Solitons & Fractals, 19(2004),
109--128.
[18] H.-L. Li and C.-K. Lin,
Semiclassical limit and well-posedness of nonlinear
Schr"odinger-Poisson systems, E. Journal of Differential
Equations, 2003(2003), 1--17.
[19] H.-L. Li and C.-K. Lin,
Zero Debye length asymptotic of the quantum hydrodynamic model for
semiconductors, Comm. Math. Physics, (2004) to appear.
[20] C.-K. Lin, On the fluid-dynamical analogue of the general nonlinear
Schr"odinger equation, Southeast Asia Bulletin of Mathematics,
22(1998), 45--56.
[21] C.-K. Lin, Remark on the singularity of the nonlinear Schr"odinger
equation: hydrodynamical approach, Southeast Asia Bulletin of
Mathematics, 22(1998), 161--170.
[22] F.-H. Lin, and T. C. Lin,
Vortices in two-dimensional Bose-Einstein condensates, AMS/IP
Studies in Advanced Mathematics, 29(2002), 87--114.
[23] F.-H. Lin, and J. X. Xin,
On the incompressible fluid limit and the vortex motion law of the
nonlinear Schr"odinger equation, Commun. in Math. Phys.,
200(1999), 249--274.
[24] Y. C. Ma,
The complete solution of the long wave-short wave resonance
equations, Stud. Appl. Math., 59(1978), 201--221.
[25] A. Majda,
Compressible Fluid Flow and Systems of Conservation Laws in
Several Space Variables, emph{Appl. Math. Sci.}, {f 53},
Springer-Verlag, (1984).
[26] N. Masmoudi and K. Nakanishi, From nonlinear Klein-Gordon
equation to a system of coupled nonlinear Schr"odinger equations.
Math. Ann. 324 (2002), no. 2, 359--389.
[27] T. Ogawa,
Global well-posedness and conservation laws for the water wave
interaction equation, Proceeding of the Royal Society of
Edinburgh, 127A(1997), 368--384.
[28] L. M. Pismen,
Structure and dynamics of defects in 2D complex vector field,
Physica D, 73(1994), 244--258.
[29] L. M. Pismen,
Vortices in Nonlinear Fields, emph{International Series of
Monographs on Physics} {f 100}, Clarendon Press, Oxford (1999).
[30] N. Sepulveda,
Solitary waves in the resonant phenomenon between a surface
gravity wave packet and an internal gravity wave, Phys. Fluids,
30(1987), 1984--1992.
[31] C. Sulem and P.-L. Sulem,
The Nonlinear Schr"odinger Equation, emph{Appl. Math. Sci.} {f
139}, Springer-Verlag, (1999).