簡易檢索 / 詳目顯示

研究生: 蕭郁琪
Hsiao, Yu-Chi
論文名稱: 共享停車位預約系統之最佳化供需配對研究
A Study on Optimizing Supply-Demand Matching in Shared Parking Reservation Systems
指導教授: 王逸琳
Wang, I-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 55
中文關鍵詞: 共享停車錯時停車整數規劃貪婪演算法粒子群演算法遺傳演算法
外文關鍵詞: Shared Parking, Staggered Parking, Integer Linear Programming, Greedy Algorithm, Particle Swarm Optimization, Genetic Algorithm
相關次數: 點閱:109下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著共享經濟的快速發展,都市化的擴張加快,自用車輛的數量也隨之增加。都會區的停車空間的有效利用與分配已成一個重要的最佳化議題。本研究針對此議題,提出一種共享停車預約模型。該模型基於已知的停車供需資料,希望能透過錯時停車策略以最佳化停車資源的分配,從而提高其利用效率。與傳統的即時預訂系統相比,這種方法提前收集供需數據,以實現更高效的停車資源分配,進而有效紓解都會區的停車壓力,促進都市環境的可持續發展。
    為了求解最佳的停車供需配對問題,本研究首先建構一個基本的整數規劃模式(BIP),其限制式將排除可停在同一車位的兩兩停車需求間的衝突關係。BIP模式通常有大量限制式的問題,為解決此缺點,本研究將上述停車需求衝突關係建構成一網路圖,並透過圖論中的團(clique)推導出更精簡有效的限制式,進而提出一個進階的整數規劃模式(CIP)。儘管上述整數規劃模式能夠求得精確的最佳解,但在解決大規模問題仍然過於耗時。因此,本研究進一步設計三種求解演算法:貪婪演算法(GR)、粒子群演算法(PSO)、以及遺傳演算法(GA),以在短時間內求得不錯的可行解,從而滿足現實中經常出現的停車需求指派。
    經由大量數值測試後,本研究發現,簡化限制式後的CIP模式相較於基本BIP模式在計算時間上顯著縮短。在演算法表現方面,GR在小規模問題上提供了快速解決方案,但在大型測試資料上表現欠佳;PSO在中等規模問題上表現出色,但在處理大規模測試資料時需要較長計算時間才能收斂;GA通過使用基於位置的交配和插入突變,在中大規模測試資料上的求解展現穩健的表現。

    This study addresses the critical issue of efficient utilization and allocation of parking spaces in urban areas, proposing a shared parking reservation model that optimizes the allocation of parking resources based on known parking supply and demand data. The model employs a staggered parking strategy to improve parking space utilization efficiency. To solve the optimal parking supply-demand matching problem, the study develops an integer linear programming model (BIP) and introduces a graph theory-based method to simplify the constraints to form a reduced model (CIP), significantly reducing computational complexity. Due to the limitations of exact solution methods, the study further designs three heuristic algorithms: Greedy Algorithm (GR), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA).
    Extensive numerical experiments demonstrate that the constraint simplification CIP model outperforms the original BIP model in terms of computational time. Among the heuristic algorithms, GR provides quick solutions for small-scale problems, PSO performs well on medium-scale problems but requires longer computation time for large-scale instances, and GA, using position-based crossover and insertion mutation, exhibits robust performance in solving medium to large-scale problems. The proposed methods effectively optimize parking resource allocation, contributing to the alleviation of parking pressures and the promotion of sustainable urban development. Future research directions include incorporating real-time data, integrating other relevant factors, and developing user-friendly interfaces to facilitate the adoption of shared parking systems.

    摘要 III 目錄 VIII 表格目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究問題與範圍 3 1.4 研究範圍與限制 5 1.5 研究流程 6 1.6 論文架構 7 第二章 文獻回顧 8 2.1 共享經濟與共享停車位 8 2.1.1 共享經濟的概念與發展 8 2.1.2 共享停車位的發展與挑戰 9 2.2 啟發式演算法 10 2.2.1 貪婪演算法(Greedy Algorithm) 10 2.2.2 粒子群演算法(Particle Swarm Optimization, PSO) 11 2.2.3 遺傳演算法(Genetic Algorithms, GA) 12 2.3 小結 14 第三章 研究方法 15 3.1 問題描述與研究方法 15 3.2 研究步驟與假設條件 16 3.3 數學模型與求解方法 17 3.3.1 基本整數線性規劃模式BIP 17 3.3.2 基於圖論簡化限制式的進階整數規劃模式CIP 19 3.4 求解演算法 20 3.4.1 貪婪演算法(Greedy Algorithm, GR) 20 3.4.2 粒子群演算法(Particle Swarm Optimization, PSO) 20 3.4.3 遺傳演算法(Genetic Algorithms, GA) 21 3.5 小結 22 第四章 數值分析 23 4.1 實驗設計 23 4.2 Gurobi求解結果分析 24 4.2.1 限制式簡化效果分析 24 4.3 貪婪演算法(GR)分析 25 4.4 粒子群演算法(PSO)的參數選分析 30 4.5 遺傳演算法(GA)的性能分析 31 4.6 小結 37 第五章 結論與未來研究方向 38 5.1 研究總結與貢獻 38 5.2 未來研究方向 38 參考文獻 40

    黃郁授。2007。自適應慣性權重改良粒子群演算法之研究。資訊管理研究所,中原大學。
    洪筠筑。2019。預約制共享停車位系統車位使用之最佳化排程問題。運輸與物流管理學系碩士論文,國立交通大學。
    陳柏瑋。2015。停車位共享系統之穩健排程。工業管理研究所,國立台灣科技大學。
    林珏廷。2022。以科技接受模型探討共享停車APP使用之因素。資訊管理研究所,東吳大學。
    Belk, R. (2014).You are what you can access: Sharing and collaborative consumption online. Journal of Business Research, 67(8), 1595-1600.
    Bardhi, F., & Eckhardt, G. (2012). Access-Based Consumption: The Case of Car Sharing. Journal of Consumer Research, 39(4), 881-898.
    Botsman. R., & Rogers, R. (2010)What’s Mine Is Yours: The Rise of Collaborative Consumption. New York: HarperCollins Publishers.
    Bierwirth, C., Mattfeld, D. C., & Kopfer, H. (1996). On permutation representations for scheduling problems. In H.-M. Voigt, W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature — PPSN IV (pp. 310-318). Springer. https://doi.org/10.1007/3-540-61723-X_994
    Chai, H., Ma, R., & Zhang, H. M. (2019). Search for parking: A dynamic parking and route guidance system for efficient parking and traffic management. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3792-3805.
    Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58-73. https://doi.org/10.1109/4235.985692.
    Chen, X., & Xu, H. (2021). Optimizing urban parking allocation with a predictive model and real-time data. Journal of Transportation Engineering, Part A: Systems, 147(2), 04021010. https://doi.org/10.1061/JTEPBS.0000506.
    Dantzig, G. B. (1957). Discrete-Variable Extremum Problems. Operations Research, 5(2), 266-288. doi: doi:10.1287/opre.5.2.266
    Dantzig, G. B. (1963). Linear Programming and Extensions.
    Engelbrecht, A. (2012). Particle swarm optimization: Velocity initialization. In Proceedings of the 2012 IEEE World Congress on Computational Intelligence (pp. 1-8). Brisbane, Australia: IEEE.
    Fisher, M. L. (2004). The Lagrangian relaxation method for solving integer programming problems. Management science, 50(12_supplement), 1861-1871.
    Geissinger, A.,Laurell, C. & Sandström, C.(2018). Digital Disruption beyond Uber and Airbnb—Tracking the long tail of the sharing economy.Technological Forecasting & Social Change, Elsevier, 155(C).
    Goldberg, D. E., & Lingle, R. (1985). Alleles, loci, and the traveling salesman problem. In J. J. Grefenstette (Ed.), Proceedings of an International Conference on Genetic Algorithms and Their Applications (pp. 154-159). Lawrence Erlbaum Associates.
    Goldberg, D. E. (1989). "Genetic Algorithms in Search, Optimization, and Machine Learning." Addison-Wesley.
    Held, M., & Karp, R. (1962). A Dynamic Programming Approach to Sequencing Problems. Journal of the Society for Industrial and Applied Mathematics, 10(1), 196-210. doi: 10.1137/0110015
    Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press.
    Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE.
    Korte, B., & Vygen, J. (2018). Combinatorial optimization: Theory and algorithms (6th ed.). Springer.
    Lawler, E. L., & Wood, D. E. (1966). Branch-and-Bound Methods: A Survey. Operations Research, 14(4), 699-719. doi: doi:10.1287/opre.14.4.699
    Lee, J., Kim, S., & Park, Y. (2019). "A study on smart parking management system based on IoT." International Journal of Smart Home, 13(3), 35-42.
    Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer.
    Marini, F., & Walczak, B. (2015). Particle swarm optimization: A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-164.
    Owyang, J., Samuel, A., & Grenville, A. (2014). Sharing is the New Buying: Winning in the Collaborative Economy. Retrieved May 21, 2019, from https://www.slideshare.net/jeremiah_owyang/sharingnewbuying
    Pearson, D. (2005). A polynomial-time algorithm for the change-making problem. Operations Research Letters, 33(3), 231-234
    Sundararajan, A. (2016). The sharing economy: The end of employment and the rise of crowd-based capitalism. MIT Press.
    Schor, J (2016). Debating the Sharing Economy. Journal of Self-Governance & Management Economics, 4(3),7-22.
    Stephany, A. (2015) The business of sharing: Making it in the new sharing economy. Basingstoke: Palgrave MacMillan
    Shoup, D. C. (2006). Cruising for parking. Transport Policy, 13(6), 479-486.
    Syswerda, G. (1991). "Scheduling optimization and the use of genetic algorithms." In Handbook of Genetic Algorithms (pp. 332-349). Van Nostrand Reinhold.
    Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. In M. Jünger, G. Reinelt, & G. Rinaldi (Eds.), Combinatorial optimization—Eureka, you shrink! (pp. 185-207). Springer. https://doi.org/10.1007/3-540-36478-1_17
    Zhu, Y., Ye, X., Chen, J., Yan, X., & Wang, T. (2020). Impact of cruising for parking on travel time of traffic flow. Sustainability, 12(8), 3079. https://doi.org/10.3390/su12083079.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE