| 研究生: |
許書諭 Hsu, Shu-Yu |
|---|---|
| 論文名稱: |
Eps8 磷酸化參與在v-Src調控之細胞轉型 The involvement of Eps8 phosphorylation in v-Src mediated transformation |
| 指導教授: |
呂增宏
Leu, Tzeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 磷酸化 |
| 外文關鍵詞: | Eps8, Src, phosphorylation, STAT3 |
| 相關次數: | 點閱:90 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Eps8( EGFR pathway substrate no.8)是1993年由Dr. Di Fiore 所發現的蛋白質,具有兩種isoforms,分別是分子量97kDa的p97Eps8及68kDa的p68Eps8。在NIH3T3細胞中增加Eps8的表現,能夠促進EGF所誘發的mitogenic signal。先前的研究顯示,在許多人類的腫瘤細胞株中p97Eps8有高度磷酸化的情形,而大量表達p97Eps8於NIH3T3細胞能夠促進細胞EGF receptor所誘導的轉型﹔此外,研究也發現 v-Src transformed cell(IV5)中p97Eps8 和p68Eps8蛋白質表現量增加,並且有高度磷酸化現象。將IV5 細胞中的p97Eps8 knock down,則會抑制細胞增生及動物腫瘤的生長。因此我們推測Eps8蛋白質的表達,在v-Src mediated transformation扮演重要的角色。實驗室先前已經證明v-Src可直接磷酸化p97Eps8於Tyr45和Tyr524,我們進一步想要瞭解這兩個位置的磷酸化是否影響細胞轉型。首先我們將Eps8分別在Tyr45和Tyr524的位置突變為苯丙胺酸(phenylalanine),接著送入wild type -Eps8、Phe45-Eps8和Phe524-Eps8到IV5細胞中,發現在這兩個磷酸化位置的突變會抑制Eps8的酪胺酸磷酸化;此外,將wild type Eps8、Phe45-Eps8和Phe524-Eps8送入 Eps8 knock down 的IV5 細胞,建立穩定表達的細胞株,觀察到Phe45-Eps8和Phe524-Eps8會抑制細胞生長、colony formation及腫瘤生成,並且也會抑制STAT3 Tyr705的磷酸化以及下游Cyclin D1的表達。我們也發現Phe45-Eps8和Phe524-Eps8的細胞株中,IRSp53的蛋白表達減少。由於IRSp53會藉由和Eps8的交互作用活化STAT3以及促進Cyclin D1的表現量,進而影響腫瘤生成。因此Src調控Eps8於Tyr45和Tyr524的磷酸化,可能透過影響IRSp53的蛋白表達,而活化STAT3,造成細胞不正常的分裂。
As an EGF receptor substrate, Eps8 (EGFR pathway substrate no.8) enhances EGF-dependent mitogenesis and tumorigenesis. The presence of tyrosyl phosphorylation of p97Eps8 in several human tumor cell lines suggests its involvement in human cancer formation. As a Src substrate, Eps8 participates in v-Src-mediated cell proliferation and tumorigenesis. To address whether Src-mediated Eps8 phosphorylation is involved in cell transformation, site-directed mutagenesis indicated that Tyr45 and Tyr524 of Eps8 are the major Src phosphorylation residues on Eps8 in IV5 cells. In addition, as compared to wild type-Eps8, ectopically expressed Phe45-Eps8 or Phe524-Eps8 reduced cell proliferation in culture dish, soft agar and tumor growth in mice. Furthermore, the phosphorylation of STAT3 Tyr705 and Cyclin D1 expression were decreased in Phe45-Eps8- or Phe524-Eps8-expressing cells. Notably, we found IRSp53, which affects tumor growth through its interaction with Eps8, is reduced in Phe45-Eps8- and Phe524-Eps8-expressing cells. Thus, Src-mediated Tyr45 and Tyr524 phosphorylation on Eps8 may lead to IRSp53 overexpression and the following STAT3 activation that culminated to abnormal cell proliferation.
Biesova, Z., Piccoli, C., and Wong, W.T. (1997). Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.
Bowman, T., Broome, M.A., Sinibaldi, D., Wharton, W., Pledger, W.J., Sedivy, J.M., Irby, R., Yeatman, T., Courtneidge, S.A., and Jove, R. (2001). Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 98, 7319-7324.
Bromberg, J.F., Horvath, C.M., Besser, D., Lathem, W.W., and Darnell, J.E., Jr. (1998). Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 18, 2553-2558.
Bromberg, J.F., Wrzeszczynska, M.H., Devgan, G., Zhao, Y., Pestell, R.G., Albanese, C., and Darnell, J.E., Jr. (1999). Stat3 as an oncogene. Cell 98, 295-303.
Catlett-Falcone, R., Landowski, T.H., Oshiro, M.M., Turkson, J., Levitzki, A., Savino, R., Ciliberto, G., Moscinski, L., Fernandez-Luna, J.L., Nunez, G., et al. (1999). Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105-115.
Chen, Y.J., Shen, M.R., Maa, M.C., and Leu, T.H. (2008). Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther 7, 1376-1385.
Di Fiore, P.P., and Scita, G. (2002). Eps8 in the midst of GTPases. Int J Biochem Cell Biol 34, 1178-1183.
Disanza, A., Carlier, M.F., Stradal, T.E., Didry, D., Frittoli, E., Confalonieri, S., Croce, A., Wehland, J., Di Fiore, P.P., and Scita, G. (2004). Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6, 1180-1188.
Epling-Burnette, P.K., Liu, J.H., Catlett-Falcone, R., Turkson, J., Oshiro, M., Kothapalli, R., Li, Y., Wang, J.M., Yang-Yen, H.F., Karras, J., et al. (2001). Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107, 351-362.
Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W.T., and Di Fiore, P.P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 12, 3799-3808.
Fizazi, K. (2007). The role of Src in prostate cancer. Ann Oncol 18, 1765-1773.
Grandis, J.R., Drenning, S.D., Zeng, Q., Watkins, S.C., Melhem, M.F., Endo, S., Johnson, D.E., Huang, L., He, Y., and Kim, J.D. (2000). Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci U S A 97, 4227-4232.
Hardlow E, Lane D. (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Homsi, J., Cubitt, C., and Daud, A. (2007). The Src signaling pathway: a potential target in melanoma and other malignancies. Expert Opin Ther Targets 11, 91-100.
Irby, R.B., Mao, W., Coppola, D., Kang, J., Loubeau, J.M., Trudeau, W., Karl, R., Fujita, D.J., Jove, R., and Yeatman, T.J. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21, 187-190.
Karlsson, T., Songyang, Z., Landgren, E., Lavergne, C., Di Fiore, P.P., Anafi, M., Pawson, T., Cantley, L.C., Claesson-Welsh, L., and Welsh, M. (1995). Molecular interactions of the Src homology 2 domain protein Shb with phosphotyrosine residues, tyrosine kinase receptors and Src homology 3 domain proteins. Oncogene 10, 1475-1483.
Kim, L.C., Song, L., and Haura, E.B. (2009). Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6, 587-595.
Kishan, K.V., Scita, G., Wong, W.T., Di Fiore, P.P., and Newcomer, M.E. (1997). The SH3 domain of Eps8 exists as a novel intertwined dimer. Nat Struct Biol 4, 739-743.
Leu, T.H., Yeh, H.H., Huang, C.C., Chuang, Y.C., Su, S.L., and Maa, M.C. (2004). Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881.
Liu, P.S., Jong, T.H., Maa, M.C., and Leu, T.H. (2010). The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation. Oncogene 29, 3977-3989.
Maa, M.C., Hsieh, C.Y., and Leu, T.H. (2001). Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20, 106-112.
Maa, M.C., Lai, J.R., Lin, R.W., and Leu, T.H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450, 341-351.
Maa, M.C., Lee, J.C., Chen, Y.J., Lee, Y.C., Wang, S.T., Huang, C.C., Chow, N.H., and Leu, T.H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 282, 19399-19409.
Maa, M.C., and Leu, T.H. (1998). Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation. Biochem Biophys Res Commun 251, 344-349.
Martin, G.S. (2001). The hunting of the Src. Nat Rev Mol Cell Biol 2, 467-475.
Matoskova, B., Wong, W.T., Nomura, N., Robbins, K.C., and Di Fiore, P.P. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12, 2679-2688.
Menna, E., Disanza, A., Cagnoli, C., Schenk, U., Gelsomino, G., Frittoli, E., Hertzog, M., Offenhauser, N., Sawallisch, C., Kreienkamp, H.J., et al. (2009). Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 7, e1000138.
Mongiovi, A.M., Romano, P.R., Panni, S., Mendoza, M., Wong, W.T., Musacchio, A., Cesareni, G., and Di Fiore, P.P. (1999). A novel peptide-SH3 interaction. EMBO J 18, 5300-5309.
Rous, P. (1911). A Sarcoma of the Fowl Transmissible by an Agent Separable from the Tumor Cells. J Exp Med 13, 397-411.
Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., Bjarnegard, M., Betsholtz, C., and Di Fiore, P.P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.
Sinibaldi, D., Wharton, W., Turkson, J., Bowman, T., Pledger, W.J., and Jove, R. (2000). Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19, 5419-5427.
Summy, J.M., and Gallick, G.E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 22, 337-358.
Turkson, J., Bowman, T., Garcia, R., Caldenhoven, E., De Groot, R.P., and Jove, R. (1998). Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18, 2545-2552.
Wang, H., Patel, V., Miyazaki, H., Gutkind, J.S., and Yeudall, W.A. (2009). Role for EPS8 in squamous carcinogenesis. Carcinogenesis 30, 165-174.
Wong, W.T., Carlomagno, F., Druck, T., Barletta, C., Croce, C.M., Huebner, K., Kraus, M.H., and Di Fiore, P.P. (1994). Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 9, 3057-3061.
Yap, L.F., Jenei, V., Robinson, C.M., Moutasim, K., Benn, T.M., Threadgold, S.P., Lopes, V., Wei, W., Thomas, G.J., and Paterson, I.C. (2009). Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene 28, 2524-2534.
Zhang, W., Wang, L., Liu, Y., Xu, J., Zhu, G., Cang, H., Li, X., Bartlam, M., Hensley, K., Li, G., et al. (2009). Structure of human lanthionine synthetase C-like protein 1 and its interaction with Eps8 and glutathione. Genes Dev 23, 1387-1392.