| 研究生: |
陳晰 Chen, Shi |
|---|---|
| 論文名稱: |
低溫濺鍍氧化鎳薄膜應用於鈣鈦礦太陽能電池 Low-Temperature Sputtered Nickel Oxide Film and Its Application for Perovskite Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 氧化鎳 、濺鍍 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | Nickel oxide, Sputtering, Perovskite solar cells |
| 相關次數: | 點閱:103 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鎳具有非磁性、穩定物理與化學特性,且能帶位置佳,有利於做為鈣鈦礦太陽能電池的選擇性材料,可傳輸電洞以及阻擋電子傳輸,為一非常有潛力的材料。本研究低溫濺鍍的製程條件,來沉積氧化鎳薄膜並初步分析其特性。
本研究以低溫濺鍍氧化鎳薄膜,選用不同厚度、不同通氧氣通量與添加直流濺鍍銅做為分析。而元件方面分為兩部分,p-型與n-型兩部分,p-型為氧化鎳做為入光面,取代PEDOT:PSS有機材料,並加上多孔層氧化鎳做為電洞傳輸層,並使用上述不同條件薄膜去製程元件;n-型是將氧化鎳做為電洞傳輸層取代spiro,使得元件在大氣氛圍下可以長期保存,由於濺鍍製程能量過高,增加緩衝層做為保護,而5 nm的金做為緩衝層有最好效率3.88%,並且可以在大氣下保存12天。
In this study, we introduce the use of low temperature sputtered nickel oxide thin films as an effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite solar cells. The influence of film thickness and oxygen flow doping on the device performance are scrutinized. With the film thickness of 5 nm, we achieved power conversion efficiency of 13.7% for the p-i-n heterojunction inverted structure. We also used nickel oxide film as a hole-transport layer for the n-i-p structure which can prevent perovskite degradation from oxygen and water in the ambient atmosphere and thus improve its stability. The result indicated that nickel oxide film is better than other organic materials as blocking layer in p-i-n perovskite solar cells. Moreover, The nickel oxide film stability can improve the stability in air atmosphere as a hole-transport layer in n-i-p perovskite solar cells.
[1] E. Becquerel, Compt. Rend. Acad. Sci., 1839. 87(9): p. 145.
[2] A. Kojima, et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 2009. 131 (17): p. 6050-6051.
[3] J. Y. Jeng, et al., Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells Advanced Mater., 2014, 26(24): p. 4107–4113.
[4] K. C. Wang, et al., Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells, Appl. Mater. Interfaces, 2014. 6(15): p. 11851–11858.
[5] E. Fujii et al., Preferred orientations of NiO films prepared by plasma-enhanced metalorganic chemical vapor deposition, Jpn. J. Appl. Phys., 1996. 35(3): p. 328-330.
[6] H. Sato, et al., Transparent conducting p-type NiO thin films prepared by magnetron sputtering, Thin Film Solid, 1993. 236(1): p. 27-31.
[7] A. B. Kunz, Electronic structure of NiO, J. Phys. C, 1981. 14(16): p. 445.
[8] D. Adler and J. Feinleib, Electrical and optical properties of narrow-band materials, Phys. Rev B, 1970. 2(8): p. 3112-3134.
[9] P. Puspharajah, et al., Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique, Journal of Materials Science, 1997. 32(11): p. 3001-3006.
[10] W. C. Yeh and M. Matsumura, Chemical Vapor Deposition of Nickel Oxide Films from Bis-p- Cyclopentadienyl-Nickel, Journal of Applied Physics, 1997. 36(11): p. 6884-6887.
[11] C. M. Lampert, The electrochromic properties of hydrous nickel oxide, Solar Energy Mater., 1987. 11(1): p. 1-27.
[12] C. M. Lampert, et al., Chemical and optical properties of electrochromic nickel oxide films, Solar Energy Materials, 1986. 14(3): p. 161-174.
[13] P. C. Yu et al., Chemical and optical properties of electrochromic nickel oxide films, Solar Energy Materials, 1986. 16, 14(3): p. 161-174.
[14] M. K. Carpenter, et al., The electrochromic properties of hydrous nickel oxide, Solar Energy Materials, 1987. 16(4): p. 333-346.
[15] L. Bosio, et al., EXAFS study of passive films on Ni and Ni-Mo alloy electrodes Surface and Interface Analysis, 1988. 12(7): p. 380–384.
[16] R. P. Michel, et al., NiO exchange bias layers grown by direct ion beam sputtering of a nickel oxide target, IEEE Transactions on Magnetics, 1996. 32(5), p. 4651-4653.
[17] I. C. Faria, et al., Toward Efficient Electrochromic NiOx Films A Study of Microstructure Morphology and Stoichiometry of Radio Frequency Sputtered Films, Soc., 1998. 145(1): p. 235-240.
[18] M. Moriya, et al., Characteristics of a NiO barrier layer for high-T/sub c/superconducting tunnel junction, IEEE Transactions on Applied Superconductivity, 1995. 5(2): p. 2358-2360.
[19] D. H. Chen and S. H. Wu, Synthesis of nickel nanoparticles in water-in-oil microemulsions, Chemistry of Materials, 2000. 12(5): p. 1354-1360.
[20] Y. M. Lu, et al., Effects of substrate temperature on the resistivity of non-stoichiometric sputtered NiOx films, Surface and Coatings Technology, 2002. 155(2): p. 231-235.
[21] Y. M. Lu, et al., Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering, Thin Solid Films, 2002. 420: p. 54-61.
[22] H. L. Chen, et al., Characterization of sputtered NiO thin films, Surface and Coatings Technology, 2005. 198(1): p. 138-142.
[23] H. L. Chen, et al., Thickness dependence of electrical and optical properties of sputtered nickel oxide films, Thin Solid Films, 2006. 498(1): p. 266-270.
[24] W. L. Jang, et al., Electrical properties of Li-doped NiO films, Journal of the European Ceramic Society, 2010. 30(2): p. 503-508.
[25] H. S. Kim, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, 2012. 2: p. 591.
[26] J. Burschka, et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 2013. 499(7458): p. 316-319.
[27] M. Liu, et al., Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 2013. 501(7467): p. 395-398.
[28] N. J. Jeon, et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat Mater, 2014.13(9): p. 897-903.
[29] M. Xiao, et al., A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells, Angewandte Chemie, 2014. 126(37): p. 10056-10061.
[30] B. Abdollahi Nejand, et al., New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells, ACS Appl. Mater., Interfaces, 2015. 7(39): p. 21807–21818
[31] M. D. Irwin, et al., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, PNAS, 2008. 105(8): p. 2783–2787.
[32] J. Y. Jeng, et al., Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/pcbm planar-heterojunction hybridsolar cells, Advanced Mater., 2014. 26(24): p. 4107-4113.
[33] K. C. Wang, et al., p-Type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Scientific Reports, 2014. 4: p. 4756.
[34] W. Chen, et al., Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells, Energy Environ. Sci., 2015. 8: p. 629-640.
[35] W. C. Lai, et al., Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer, IEEE Transactions on Electron Devices, 2015. 62(5): p. 1590-1595.
[36] WC Lai, et al., Oxidized Ni/Au transparent electrode in efficient CH3NH3PbI¬3 perovskite/fullerene planar heterojunction hybrid solar cells, Advanced Mater., 2016. 28(17): p. 3290-3297.
[37] A. S. Subbiah, et al., Inorganic hole conducting layers for perovskite-based solar cells, J. Phys. Chem. Lett., 2014. 5(10): p. 1748–1753.
[38] L Hu, et al., Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells, ACS Photonics, 2014. 1(7): p. 547–553.
[39] J Cui, et al., CH3NH3PbI3-Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide, ACS Appl. Mater. Interfaces, 2014. 6(24), p. 22862–22870.
[40] I. J. Park, et al., New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p−i−n Geometry, J. Phys. Chem. C, 2015. 119(49): p. 27285–27290.
[41] L. Etgar, et al., Hole-transport material-free perovskite-based solar cells, MRS Bulletin, 2015.40(8): p. 674-680.
[42] Y. Li, et al., Hole-conductor-free planar perovskite solar cells with 16.0% efficiency, J. Mater. Chem. A, 2015. 3: p. 18389-18394.
[43] J. H. Kim, et al., High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer, Advanced Mater., 2014, 27(4): p. 695–701.
[44] J. W. Jung, et al., A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells, Advanced Mater., 2015, 27(47): p. 7874–7880.
[45] J. H. Park, et al., Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition, Advanced Mater., 2015, 27(27): p. 4013–4019.
[46] X. Yin, et al., High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer, J. Mater. Chem. A, 2015. 3, p. 24495–24503.
[47] Ming-Hsien Li, et al., Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells. Energies 2016, 9(5).