簡易檢索 / 詳目顯示

研究生: 柯卜元
Ke, Bu-Yuan
論文名稱: 氮化鎵(氮化鋁鎵)系蕭特基二極體式氣體感測器之研製
Fabrication of GaN (AlGaN) Based Schottky Diode-Type Gas Sensors
指導教授: 劉文超
Liu, Wen-Chau
共同指導教授: 林坤緯
Lin, Kun-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 163
中文關鍵詞: 奈米粒子過氧化氫表面處理氫氣感測器蕭特基二極體活化能粗糙度
外文關鍵詞: nanoparticle, Pd, Pt, hydrogen peroxide, surface treatment, hydrogen sensor, Schottky diode, activation energy, roughness
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要探討以氮化鎵/氮化鋁鎵/氮化鎵結構研製蕭特基式氣體感測器,並在感測區域以表面處理的方式生成自然氧化層。另外在催化金屬(鈀、鉑)薄膜上利用紫外光還原氯化鈀(PdCl2)或氯鉑酸(H2PtCl6)還原出鈀、鉑奈米粒子結構。其結果顯示具奈米粒子結構之蕭特基氣體感測器在氫氣與氨氣感測靈敏度方面皆大幅提升。
    與其他材料(如砷化鎵系、矽)相比,氮化鎵/氮化鋁鎵具有寬能隙能帶、良好熱穩定性及物理、化學性質穩定之特點,且在氮化鎵/氮化鋁鎵異質接面具有二維電子氣(2-DEG)。因此以其材料研製之氣體感測器展現優秀的感測能力與寬廣的操作溫度。
     本論文利用紫外光製作奈米粒子結構,相較於傳統熱蒸鍍製程等,此方法可縮短製程時間、漸少製作蕭特基接面時的耗能。另外,在感測特性方面,加入奈米粒子結構亦提升感測區域之粗糙度及體表面積比,降低氣體感測中吸附所需之活化能以提升感測倍率。此外,利用過氧化氫之表面處理形成自然氧化層(GaOx),可顯著降低元件漏電流並增加吸附座以達到提升感測能力之效果。

    In this thesis, the GaN/AlGaN/GaN-based Schottky gas sensor was fabricated and studied, the native oxide layer formed by surface treatment on the detection region. Furthermore, palladium chloride (dihydrogen hexachloroplatinate (IV) hexahydrate) used for reducing the catalytic metal Pd (Pt) nanoparticle by UV expose process. In this work, the sensing performance substantially enhance not only to hydrogen but to ammonia.
    Compare to previous studied (e.g. GaAs, Si), GaN (AlGaN) series material exhibit wide energy gap, high temperature stability, and physical, chemical stability. In addition, two-dimension electron gas (2DEG) exist in GaN/AlGaN heterojunction, which is benefit for hydrogen sensing. With these advantages, the Schottky gas sensor based on GaN/AlGaN present excellent sensitivity and wide detection temperature.
    Different form traditional evaporate plating (EP), the nanoparticle formed by UV exposed process spend shorter time and less energy consume. Furthermore, detection region with nanoparticle enhance surface-volume ratio and roughness, which cause the lower activation energy of hydrogen sensing reaction contribute to detection characteristic improve. Besides, the native oxide layer formed by hydrogen peroxide (H2O2) treatment apply more adsorption site and decrease the reverse bias leakage current

    Abstact Table Captions Figure Captions Chapter 1 Introduction 1-1 Introduction to Hydrogen sensors ………………………………….…… 1 1-2 Hydrogen Sensing Mechanism of Schottky Contact-Type Sensor………4 1-3 Ammonia Sensing Mechanism of Schottky Contact-Type Sensor……..….5 1-4 Thesis Organization………………………………………..…………6 Chapter 2 Hydrogen Sensor Based on a Pd Nanoparticle (NP)     /Pd/GaOx/GaN Structure 2-1 Introduction……………………………………………………………… 7 2-2 Device Fabrication ………………………………………………………9 2-3 Experimental Result and Discussion 2-3-1 Material Analysis …………………………………………………9 2-3-2 Electrical Characteristics and Analysis……………………………10 2-3-3 Hydrogen Sensing Performance ………………………………….11 2-3-4 Hydrogen Sensing with Humidity Ambience …………………….13 2-3-5 Analysis of Hydrogen Sensing Reaction………………………………14 2-4 Summary………………………………………………………………...18 Chapter 3 Gas Sensors Based on a Pt/GaOx/GaN Structure 3-1 Introduction……………………………………………………………...19 3-2 Device Fabrication ……………………………………………………...20 3-3 Experimental Result and Discussion 3-3-1 Material Analysis………………………………………………….22 3-3-2 Electrical Characteristics and Analysis……………………………22 3-3-3 Hydrogen Sensing Performance ………………………………….24 3-3-4 Analysis of Hydrogen Sensing Reaction…………………………..26 3-3-5 Hydrogen Sensing with Humidity Ambience……………………..29 3-3-6 Ammonia Sensing Performance…………………………………...30 3-4 Summary………………………………………………………………...34 Chapter 4 Gas Sensors Based on a Pt Nanoparticle(NP)/Pt/GaOx/GaN Structure 4-1 Introduction……………………………………………………………...35 4-2 Device Fabrication ……………………………………………………...37 4-3 Experimental Result and Discussion 4-3-1 Material Analysis……………………………………………………...38 4-3-2 Electrical Characteristics and Analysis……………………………39 4-3-3 Hydrogen Sensing Performance ………………………………….40 4-3-4 Analysis of Hydrogen Sensing Reaction…………………………..42 4-3-5 Hydrogen Sensing with Humidity Ambience……………………..45 4-3-6 Ammonia Sensing Performance……………………………...……46 4-4 Summary………………………………………………………………...50 Chapter 5 Conclusion and Future Work 5-1 Conclusion………………………………………………………...……..51 5-2 Future Work………………………………………………...……………53 Reference ………………………………………………………………...…54 Table …………………………………………………………………….…70 Figure……………………………………………………………………………………90

    [1] B. Johnston, M. C. Mayo, and A. Khare, "Hydrogen: the energy source for the 21st century," Technovation, vol. 25, pp. 569-585, 2005.
    [2] S. K. Arya, S. Krishnan, H. Silva, S. Jean, and S. Bhansali, "Advances in materials for room temperature hydrogen sensors," Analyst, vol. 137, pp. 2743-2756, 2012.
    [3] Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, and T. Wang, "High performance and negative temperature coefficient of low temperature hydrogen gas sensors using palladium decorated tungsten oxide," Journal of Materials Chemistry A, vol. 3, pp. 1317-1324, 2015.
    [4] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D. P. Anderson, G. G. Andersson, W. Wlodarski, "Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films," International Journal of Hydrogen Energy, vol. 38, pp. 12865-12877, 2013.
    [5] N. H. Al-Hardan, M. J. Abdullah, and A. A. Aziz, "Sensing mechanism of hydrogen gas sensor based on RF-sputtered ZnO thin films," International Journal of Hydrogen Energy, vol. 35, pp. 4428-4434, 2010.
    [6] S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, and T. Hasegawa, "Distributed hydrogen determination with fiber-optic sensor," Sensors and Actuators B: Chemical, vol. 108, pp. 508-514, 2005.
    [7] N. Heng-Yong and N. Yasuo, "Pd-on-GaAs Schottky Contact: Its Barrier Height and Response to Hydrogen," Japanese Journal of Applied Physics, vol. 30, p. 906, 1991.
    [8] W. Gopel, J. N. Zemel, “Sensors,” vol.1, ch10, Weinheim:VCH press, 1991.
    [9] A. Mandelis and C. Christofides, “Physics, chemistry and technology of soild state gas sensor devices,” ch3, New York : John Wily & Sons, 1993.
    [10] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor,” Science, vol. 307, pp. 1942-1945, 2005.
    [11] O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, and C. A. Grimes, “Gas sensing characteristics of multi-wall carbon nanotubes,” Sensors and actuators b-chemical, vol. 81, pp. 32-41, 2001.
    [12] P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Review of scientific instruments, vol. 71, pp. 2959-2978, 2000.
    [13] J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart materials & structures, vol. 13, pp. 1045-1049, 2004.
    [14] V. V. Sysoev, B. K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, “Toward the nanoscopic "electronic nose": Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors,” Nano letters, vol. 6, pp. 1584-1588, 2006.
    [15] R. R. Reston, and E. S. Kolesar, “Silicon-micromachined gas-chromatography system used to separate and detect ammonia and nitrogen-dioxide .1. design, fabrication, and integration of the gas-chromatography system,” Journal of microelectromechanical systems, vol. 3, pp. 134-146, 1994.
    [16] K. C. Ho, and Y. H. Tsou, “Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films,” Sensors and actuators b-chemical, vol. 77, pp. 253-259, 2011.
    [17] Y. Joseph, B. Guse, A. Yasuda, and T. Vossmeyer, “Chemiresistor coatings from Pt- and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors,” Sensors and actuators b-chemical, vol. 98, pp. 188-195, 2004.
    [18] U. Lange, N. V. Roznyatouskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Analytica chimica acta, vol. 614, pp. 1-26, 2008.
    [19] G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sensors and actuators b-chemical, vol. 107, pp. 209-232, 2005.
    [20] S. Semancik, R. E. Cavicchi, M. C. Wheeler, J. E. Tiffany, G. E. Poirier, R. M. Walton, J. S. Suehle, B. Panchapakesan, and D. L. DeVoe, “Microhotplate platforms for chemical sensor research,” Sensors and actuators b-chemical, vol. 77, pp. 579-591, 2001.
    [21] G. Korotcenkov, “The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors,” Materials science & engineering r-reports, vol. 61, pp. 1-39, 2008.
    [22] N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?,” Sensors and actuators b-chemical, vol. 121, pp. 18-35, 2007.
    [23] J. R. Stetter and K. F. Blurton, “Portable high-temperature catalytic reactor - application to air-pollution monitoring instrumentation,” Review of scientific instruments, vol. 47, pp. 691-694, 1976.
    [24] J. R. Stetter and K. F. Blurton, “Selective oxidation of hydrogen in carbon monoxide-air streams - application to environmental monitoring,” Industrial & engineering chemistry product research and development, vol. 16, pp. 22-25, 1977.
    [25] N. Yamazoe and N. Miura, “Potentiometric gas sensors for oxidic gases,” Journal of electroceramics, vol. 2, pp. 243-255, 1998.
    [26] M. Holzinger, J. Maier, and W. Sitte, “Potentiometric detection of complex gases: Application to CO2,” Solid state ionics, vol. 94, pp. 217-225, 1997.
    [27] T. Maruyama, S. Sasaki, and Y. Saito, “Potentiometric gas sensor for carbon-dioxide using solid electrolytes,” Solid State Ionics, vol. 23, pp. 107-112, 1987.
    [28] A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, “Solid-State Gas Sensors - A Review,” Journal of the electrochemical society, vol. 139, pp. 3690-3704, 1992.
    [29] N. Miura, G. Y. Lu, and N. Yamazoe, “High-temperature potentiometric /amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode,” Sensors and actuators b-chemical, vol. 52, pp. 169-178, 1998.
    [30] J. Ruzicka and E. H. Hansen, “New potentiometric gas sensor - air-gap electrode,” Analytica chimica acta, vol. 69, pp. 129-141, 1974.
    [31] M. Holzinger, J. Maier, and W. Sitte, “Fast CO2-selective potentiometric sensor with open reference electrode,” Solid state ionics, vol. 86-8, pp. 1055-1062, 1996.
    [32] H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, pp. 267-307, 2007.
    [33] O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, and N. Mukherjee, “A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations,” Journal of nanoscience and nanotechnology, vol. 4, pp. 733-737, 2004.
    [34] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Gorgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Applied physics letters, vol. 80, pp. 1222-1224, 2002.
    [35] B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sensors and actuators b-chemical, vol. 56, pp. 164-168, 1999.
    [36] Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen- sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol.26, pp. 55-57, 1975.
    [37] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
    [38] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
    [39] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-state. Electron, vol. 25, pp. 753-758, 1982.
    [40] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers,” Thin Solid Films, vol. 348, pp. 266-272, 1999.
    [41] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
    [42] H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
    [43] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
    [44] Y. I. Chou, C. M. Chen, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,“ IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.

    [45] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEEE Electron. Lett., vol. 38, pp. 92-94, 2002
    [46] A. L. Spetz, L. Nnëus, H. Svenningstrop, P. Toblas, L.-G. Ekedahl and O. Larsson et al., “SiC based field effect gas sensors for industrial applications,” Phys Status Solidi A, vol. 185, pp. 15–25, 2001.
    [47] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier and M. Eickhoff, “A highly stable SiC based microhotplate NO2 gas-sensor, ” Sensor Actuators B, vol. 78, pp. 216–220, 2001.
    [48] S. Roy, C. Jacob, and S. Basu, “Ohmic contacts to 3C–SiC for Schottky diode gas sensors,” Solid-State Electron, vol. 47, pp. 2035–2041, 2003.
    [49] F. Qiu, M. Matsumiya, W. Shin, N. Izu and N. Murayama, “Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sens. Actuators B, vol. 94, pp. 152-160, 2003.
    [50] Y. Gurbuz, , W. P. Kang, J. L. Davidson, and D. V. Kerns, “Current Conduction Mechanism and Gas Adsorption Effects on Device Parameters of the Pt/SnO /Diamond Gas Sensor, ” IEEE Trans. Electron Devices., vol. 46, pp. 914-920, 1999.
    [51] Y. Gurbuz, W. P. Kang, J. L. Davison, and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104,1996.
    [52] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors, ” Sens. Actuators B, vol. 36, pp. 68-72, 1996.
    [53] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes,” Solid-State Electron, vol. 47, pp. 1069–1073, 2003.
    [54] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electronics, vol. 49, pp. 1330-1334, 2005.
    [55] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, “ Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction”, J. Appl. Phys., vole. 87, pp. 801-803, 2000.
    [56] T. S. Hung, and J. G. Pang, “Thermal stability of the Pd-Al alloy Schottky contacts to n-GaAs”, Mater. Sci. Eng. B, vol. 49, pp. 144-151, 1997.
    [57] A. Imre, E. Gontier-Moya, D. L. Beke, and B. Ealet, “ Auger electron spectro-scopy of the kinetics of evaporation of palladium beaded films from sappaire substrate”, Appl. Phys. A, vol. 67, pp. 469-473, 1998.
    [58] H. D. Tong, A. H. J. Vanden Berg, J. G. E. Gardeniers, and H. V . Jansen, “Preparation of palladium-silver alloy films by a dual-sputtering technique and its application in hydrogen separation membrance”, Thin Solid Fims, vol. 479, pp. 89-94, 2005.
    [59] F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, “Interfacial processes in the Pd/a-Ge:H system”, Appl. Surf. Sci, vol. 70-71, no. 2, pp. 722-726, 1993.
    [60] S. Uemiya, T. Endo, R. Yoshiie, W. Katoh, and T. Kojima, “Fabrication of thin palladium-silver alloy film by using electroplating technique”, Mater. Trans., vol. 48, no. 5, pp. 1119-1123, 2007.
    [61] D. Baudrand and J. Bengston, MacDermid Inc., Waterbury, amd Conn, “Electroless plating process-developing technologies for electroless nickel, and gold”, Metal Finishing, pp. 55-57, 1995.
    [62] Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles”, IEEE. Electro. Dev. Lett., vol. 26, no. 2, pp. 62-65, 2005.
    [63] J. Suehiro, S. I. Hidaka, S. Yamane, and K. Imasaka, “Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor”, Sens. Actu. B, vol. 127, pp. 505-511, 2007.
    [64] L. Huang, C. S. Chen, Z. D. He, D. K. Peng, and G. Y. Meng, “Palladium membranes supported on porous ceramics prepared by chemical vapor deposition”, Thin Soild Films, vol. 302, pp. 98-101, 1997.
    [65] T. C. Pluym, S. W. Lyons, Q. H. Powell, A. S. Gurav, and T. T. Kodas, “Palladium metal and palladium oxide particle production by spray pyrolysis”, Mater. Research Bulletin, vol. 28, no. 4, pp. 369-376, 1993.
    [66] C.-C. Chen, H.-I. Chen, I. P. Liu, H.-Y. Liu, P.-C. Chou, J.-K. Liou, W.-C. Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 211, pp. 303-309, 2015.
    [67] H.-I. Chen, K.-C. Chuang, C.-H. Chang, W.-C. Chen, I. P. Liu, and W.-C. Liu, "Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 246, pp. 408-414, 2017.
    [68] C.-M. Chang, M.-H. Hon, and I.-C. Leu, "Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms," RSC Advances, vol. 2, pp. 2469-2475, 2012.
    [69] H.-I. Chen, Y.-C. Cheng, C.-H. Chang, W.-C. Chen, I. P. Liu, K.-W. Lin, W.-C. Liu, "Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode," Sensors and Actuators B: Chemical, vol. 247, pp. 514-519, 2017.
    [70] G. Alefeld and J. Völkl, “Hydrogen in metals I-basic properties,” ch 12, Berlin; Springer-Verlag, 1978.
    [71] G. Alefeld and J. Völkl, “Hydrogen in metals II-Application-oriented properties,” ch 3, Berlin: Springer-Verlag, 1978.
    [72] D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy,” J. Chem. Soc. Faraday Trans., vol. 61, pp. 932-939, 1965.
    [73] C. C. Huang, H. I. Chen, I. P. Liu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET),” Sensors and actuators b-chemical, vol. 190, pp. 913-921, 2014.
    [74] C. S. Hsu, K. W. Lin, and W. C. Liu, “A Wireless-Transfer-Based Hydrogen Gas Sensing System with a Pd/AlGaN/GaN Heterostructure Field-Effect Transistor (HFET),” IEEE sensors journal, vol. 13, pp. 2299-2304, 2013.
    [75] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens and G. Dollinger, "Hydrogen response mechanism of Pt–GaN Schottky diodes," Applied Physics Letters, vol. 80, pp. 1222-1224, 2002.
    [76] H. Hasegawa and M. Akazawa, "Hydrogen sensing characteristics and mechanism of Pd∕AlGaN∕GaN Schottky diodes subjected to oxygen gettering," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 25, pp. 1495-1503, 2007.
    [77] C.-F. Chang, T.-H. Tsai, H.-I. Chen, K.-W. Lin, T.-P. Chen, L.-Y. Chen, Y.-C. Liu, W.-C. Liu, "Hydrogen sensing properties of a Pd/SiO2/AlGaN-based MOS diode," Electrochemistry Communications, vol. 11, pp. 65-67, 2009.
    [78] T.Y. Chen, H.I. Chen, Y.J. Liu, C.C. Huang, C.S. Hsu, C.F. Chang, and W.C. Liu, "Ammonia Sensing Properties of a Pt/AlGaN/GaN Schottky Diode," IEEE Transactions on Electron Devices, vol. 58, pp. 1541-1547, 2011.
    [79] L.M. Lechuga, A. Calle, D. Golmayo, and F. Briones, "The ammonia sensitivity of Pt/GaAs Schottky barrier diodes," Journal of Applied Physics, vol. 70, pp. 3348-3354, 1991.
    [80] A. Spetz, M. Armgarth, and I. Lundström, "Hydrogen and ammonia response of metal‐silicon dioxide‐silicon structures with thin platinum gates," Journal of Applied Physics, vol. 64, pp. 1274-1283, 1988.
    [81] C.-W. Lin, H.-I. Chen, T.-Y. Chen, C.-C. Huang, C.-S. Hsu, R.-C. Liu, and W.-C. Liu, "On an indium–tin-oxide thin film based ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 160, pp. 1481-1484, 2011.
    [82] L. Wen-Chau, P. Hsi-Jen, C. Huey-Ing, L. Kun-Wei, C. Shiou-Ying, and Y. Kuo-Hui, "Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor," IEEE Transactions on Electron Devices, vol. 48, pp. 1938-1944, 2001.
    [83] L. Wen-Chau, L. Kun-Wei, C. Huey-Ing, W. Chih-Kai, C. Chin-Chuan, C. Shiou-Ying, L. Chun-Tsen, "A new Pt/oxide/In/sub 0.49/Ga/sub 0.51/P MOS Schottky diode hydrogen sensor," IEEE Electron Device Letters, vol. 23, pp. 640-642, 2002.
    [84] T. Yan-Ying, L. Kun-Wei, L. Chun-Tsen, C. Huey-Ing, C. Hung-Ming, C. Chun-Yuan, C. Chin-Chuan, L. Wen-Chau, "Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes," IEEE Transactions on Electron Devices, vol. 50, pp. 2532-2539, 2003.
    [85] B. S. Kang, S. Kim, F. Ren, B. P. Gila, C. R. Abernathy, and S. J. Pearton, "Comparison of MOS and Schottky W/Pt–GaN diodes for hydrogen detection," Sensors and Actuators B: Chemical, vol. 104, pp. 232-236, 2005.
    [86] J.-R. Huang, W.-C. Hsu, Y.-J. Chen, T.-B. Wang, K.-W. Lin, H.-I. Chen, W.-C. Liu, "Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes," Sensors and Actuators B: Chemical, vol. 117, pp. 151-158, 2006.
    [87] T. H. Tsai, H. I. Chen, I. P. Liu, C. W. Hung, T. P. Chen, L. Y. Chen, Y. J. Liu, W. C. Liu, "Investigation on a Pd/AlGaN/GaN Schottky Diode-Type Hydrogen Sensor With Ultrahigh Sensing Responses," IEEE Transactions on Electron Devices, vol. 55, pp. 3575-3581, 2008.
    [88] A. Rizzi, M. Kocan, J. Malindretos, A. Schildknecht, N. Teofilov, K. Thonke, R. Sauer, "Surface and interface electronic properties of AlGaN(0001) epitaxial layers," Applied Physics A, vol. 87, pp. 505-509, 2007.
    [89] Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, L. Liu, "AlGaN/GaN MOS-HEMT With Dielectric and Interfacial Passivation Layer Grown by Atomic Layer Deposition," IEEE Electron Device Letters, vol. 29, pp. 838-840, 2008.
    [90] G. Steinhoff, M. Hermann, W. J. Schaff, L. F. Eastman, M. Stutzmann, and M. Eickhoff, "pH response of GaN surfaces and its application for pH-sensitive field-effect transistors," Applied Physics Letters, vol. 83, pp. 177-179, 2003.
    [91] E.-M. Erb, K. Tangemann, B. Bohrmann, B. Müller, and J. Engel, "Integrin αIIbβ3 Reconstituted into Lipid Bilayers Is Nonclustered in Its Activated State but Clusters after Fibrinogen Binding," Biochemistry, vol. 36, pp. 7395-7402, 1997.
    [92] B. S. Kang, H. T. Wang, F. Ren, B. P. Gila, C. R. Abernathy, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum., "pH sensor using AlGaN∕GaN high electron mobility transistors with Sc2O3 in the gate region," Applied Physics Letters, vol. 91, p. 012110, 2007.
    [93] B. S. Kang, H. T. Wang, F. Ren, M. Hlad, B. P. Gila, C. R. Abernathy, S. J. Pearton, C. Li, Z. N. Low, J. Lin, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, "Role of Gate Oxide in AlGaN/GaN High-Electron-Mobility Transistor pH Sensors," Journal of Electronic Materials, vol. 37, pp. 550-553, 2008.
    [94] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, "Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydrogen Peroxide Oxidation Technique," IEEE Transactions on Electron Devices, vol. 60, pp. 213-220, 2013.
    [95] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, "Novel Oxide-Passivated AlGaN/GaN HEMT by Using Hydrogen Peroxide Treatment," IEEE Transactions on Electron Devices, vol. 58, pp. 4430-4433, 2011.

    [96] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, "A Simple Gate-Dielectric Fabrication Process for AlGaN/GaN Metal-Oxide-Semiconductor High-Electron-Mobility Transistors," IEEE Electron Device Letters, vol. 33, pp. 997-999, 2012.
    [97] C.-C. Chen, H.-I. Chen, H.-Y. Liu, P.-C. Chou, J.-K. Liou, and W.-C. Liu, "On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment," Sensors and Actuators B: Chemical, vol. 209, pp. 658-663, 2015.
    [98] P. C. Chou, H. I. Chen, I. P. Liu, C. W. Hung, C. C. Chen, J. K. Liou, “Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor,” Sensors and Actuators B: Chemical, vol. 203, pp. 258-262, 2014.
    [99] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, “High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd,” Sensors and Actuators B: Chemical, vol. 83, pp. 195-201, 2002.
    [100] H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, “Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: Effects of preparation and pretreatment conditions,” Sensors and Actuators B: Chemical, vol. 108, pp. 467-472, 2005.
    [101] C. F. Lo, C. Y. Chang, B. H. Chu, S. J. Pearton, A. Dabiran, P. P. Chow, and F. Ren, “Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors,” Appl. Phys. Lett., vol. 96, pp. 232106, 2010.
    [102] Y.-Y. Tsai, C.-W. Hung, S.-I. Fu, P.-H. Lai, H.-C. Chang, H.-I. Chen, and W.-C. Liu, "Comprehensive investigation of hydrogen-sensing properties of Pt/InAlP-based Schottky diodes," Sensors and Actuators B: Chemical, vol. 124, pp. 535-541, 2007.
    [103] T.-H. Tsai, J.-R. Huang, K.-W. Lin, W.-C. Hsu, H.-I. Chen, and W.-C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sensors and Actuators B: Chemical, vol. 129, pp. 292-302, 2008.
    [104] I. Lundström, and L.G. Petersson, "Chemical sensors with catalytic metal gates," Journal of Vacuum Science & Technology A, vol. 14, pp. 1539-1545, 1996.
    [105] R.J. Silbey, R.A. Alberty, Physical Chemistry, third ed., Wiley, New York, 2001.
    [106] C. Chin-Chuan, T. Yan-Ying, L. Kun-Wei, C. Huey-Ing, H. Wei-Hsi, C. Hung-Ming, C. Chun-Yuan, and L. Wen-Chau, "Hydrogen sensing characteristics of Pd- and Pt-Al 0.3 Ga 0.7 As metal–semiconductor (MS) Schottky diodes," Semiconductor Science and Technology, vol. 19, pp. 778, 2004.
    [107] T.-H. Tsai, H.-I. Chen, K.-W. Lin, C.-W. Hung, C.-H. Hsu, L.-Y. Chen, K.-Y. Chu, W.-C. Liu, "Comprehensive study on hydrogen sensing properties of a Pd–AlGaN-based Schottky diode," International Journal of Hydrogen Energy, vol. 33, pp. 2986-2992, 2008.
    [108] R. Chandra Sekhar, G. U. Kulkarni, and C. N. R. Rao, "Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides," Journal of Physics D: Applied Physics, vol. 40, p. 2777, 2007.
    [109] J.-R. Huang, W.-C. Hsu, H.-I. Chen, and W.-C. Liu, "Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres," Sensors and Actuators B: Chemical, vol. 123, pp. 1040-1048, 2007.
    [110] C.-W. Hung, H.-L. Lin, H.-I. Chen, Y.-Y. Tsai, P.-H. Lai, S.-I. Fu, H.-M. Chuang, W.-C. Liu, "Comprehensive study of a Pd–GaAs high electron mobility transistor (HEMT)-based hydrogen sensor," Sensors and Actuators B: Chemical, vol. 122, pp. 81-88, 2007.
    [111] T.-H. Tsai, H.-I. Chen, K.-W. Lin, Y.-W. Kuo, C.-F. Chang, C.-W. Hung, L.-Y. Chen, T.-P. Chen, Y.-C. Liu, W.-C. Liu, "SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode," Sensors and Actuators B: Chemical, vol. 136, pp. 338-343, 2009.
    [112] W. P. Kang and Y. Gürbüz, "Comparison and analysis of Pd‐ and Pt‐GaAs Schottky diodes for hydrogen detection," Journal of Applied Physics, vol. 75, pp. 8175-8181, 1994.
    [113] Y. Izumi, "Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond," Coordination Chemistry Reviews, vol. 257, pp. 171-186, 2013.
    [114] T. Hübert, L. Boon-Brett, V. Palmisano, and M.A. Bader, "Developments in gas sensor technology for hydrogen safety," International Journal of Hydrogen Energy, vol. 39, pp. 20474-20483, 2014.
    [115] O. Weidemann, M. Hermann, G. Steinhoff, H. Wingbrant, A. Lloyd Spetz, M. Stutzmann, and M. Eickhoff, "Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes," Applied Physics Letters, vol. 83, pp. 773-775, 2003.
    [116] A. Salehi, A. Nikfarjam, and D.J. Kalantari, "Pd/porous-GaAs Schottky contact for hydrogen sensing application," Sensors and Actuators B: Chemical, vol. 113, pp. 419-427, 2006.
    [117] N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, "Effect of various substrates on the hydrogen sensitivity of palladium‐semiconductor diodes," Journal of Applied Physics, vol. 52, pp. 6227-6230, 1981.
    [118] L. Chun-Tsen, L. Kun-Wei, C. Huey-Ing, C. Hung-Ming, C. Chun-Yuan, and L. Wen-Chau, "A new Pd-oxide-Al/sub 0.3/Ga/sub 0.7/As MOS hydrogen sensor," IEEE Electron Device Letters, vol. 24, pp. 390-392, 2003.
    [119] L. Kun-Wei, C. Huey-Ing, L. Chun-Tsen, T. Yan-Ying, C. Hung-Ming, C. Chun-Yuan, and L. Wen-Chau, "A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor," Semiconductor Science and Technology, vol. 18, pp. 615, 2003.
    [120] S. Nakagomi, K. Okuda, and Y. Kokubun, "Electrical properties dependent on H2 gas for new structure diode of Pt–thin WO3–SiC," Sensors and Actuators B: Chemical, vol. 96, pp. 364-371, 2003.
    [121] S. Nakagomi, A. Fukumura, Y. Kokubun, S. Savage, H. Wingbrant, M. Andersson, I. Lundström, M. Löfdahl, and A.L. Spetz, "Influence of gate bias of MISiC-FET gas sensor device on the sensing properties," Sensors and Actuators B: Chemical, vol. 108, pp. 501-507, 2005.
    [122] K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, "Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure," Applied Surface Science, vol. 244, pp. 273-276, 2005.
    [123] C.-W. Hung, T.-H. Tsai, H.-I. Chen, Y.-Y. Tsai, T.-P. Chen, and W.-C. Liu, "Further investigation of a hydrogen-sensing Pd/GaAs heterostructure field-effect transistor (HFET)," Sensors and Actuators B: Chemical, vol. 132, pp. 587-592, 2008.
    [124] J.R. Huang, W.C. Hsu, Y.J. Chen, T.B. Wang, H.I. Chen, and W.C. Liu, "Investigation of Hydrogen-Sensing Characteristics of a Pd/GaN Schottky Diode," IEEE Sensors Journal, vol. 11, pp. 1194-1200, 2011.
    [125] T.H. Tsai, H.I. Chen, I.P. Liu, C.W. Hung, T.P. Chen, L.Y. Chen, Y.J. Liu, and W.C. Liu, "Investigation on a Pd–AlGaN/GaN Schottky Diode-Type Hydrogen Sensor With Ultrahigh Sensing Responses," IEEE Transactions on Electron Devices, vol. 55, pp. 3575-3581, 2008.
    [126] Y.-Y. Tsai, K.-W. Lin, H.-I. Chen, I.P. Liu, C.-W. Hung, T.-P. Chen, T.-H. Tsai, L.-Y. Chen, K.-Y. Chu, and W.-C. Liu, "Hydrogen sensing properties of a Pt-oxide-GaN Schottky diode," Journal of Applied Physics, vol. 104, pp. 024515, 2008.
    [127] Y.-L. Wang, F. Ren, W. Lim, S.J. Pearton, K.H. Baik, S.-M. Hwang, Y. Gon Seo, and S. Jang, "Hydrogen sensing characteristics of non-polar a-plane GaN Schottky diodes," Current Applied Physics, vol. 10, pp. 1029-1032, 2010.
    [128] H. Kim, W. Lim, J.-H. Lee, S.J. Pearton, F. Ren, and S. Jang, "Highly sensitive AlGaN/GaN diode-based hydrogen sensors using platinum nanonetworks," Sensors and Actuators B: Chemical, vol. 164, pp. 64-68, 2012.
    [129] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "Temperature and Humidity Dependence of Response of PMGI-Encapsulated Pt-AlGaN/GaN Diodes for Hydrogen Sensing," IEEE Sensors Journal, vol. 17, pp. 5817-5822, 2017.
    [130] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "Pt-AlGaN/GaN Hydrogen Sensor With Water-Blocking PMMA Layer," IEEE Electron Device Letters, vol. 38, pp. 657-660, 2017.
    [131] E. L. Murphy, and R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region," Phys. Rev., vol. 102, pp. 1464-1473, 1956.
    [132] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, “Schottky barrier properties of various metals on n-type GaN,” Semiconductor science and technology, vol. 11, pp. 1464-1467, 1996.
    [133] H. Hasegawa, and M. Akazawa, "Mechanism and control of current transport in GaN and AlGaN Schottky barriers for chemical sensor applications," Applied Surface Science, vol. 254, pp. 3653-3666, 2008.
    [134] H.Y. Liu, W.C. Hsu, C.S. Lee, B.Y. Chou, Y.B. Liao, and M.H. Chiang, "Investigation of Temperature-Dependent Characteristics of AlGaN/GaN MOS-HEMT by Using Hydrogen Peroxide Oxidation Technique," IEEE Transactions on Electron Devices, vol. 61, pp. 2760-2766, 2014.
    [135] T.-Y. Chen, H.-I. Chen, Y.-J. Liu, C.-C. Huang, C.-S. Hsu, C.-F. Chang, and W.-C. Liu, "Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode," Sensors and Actuators B: Chemical, vol. 155, pp. 347-350, 2011.
    [136] S. Yamulki, R.M. Harrison, and K.W.T. Goulding, "Ammonia surface-exchange above an agricultural field in Southeast England," Atmospheric Environment, vol. 30, pp. 109-118, 1996.
    [137] R.L. Knight, R.H. Kadlec, and H.M. Ohlendorf, "The Use of Treatment Wetlands for Petroleum Industry Effluents," Environmental Science & Technology, vol. 33, pp. 973-980, 1999.
    [138] R.K. Gangopadhyay, and S.K. Das, "Ammonia leakage from refrigeration plant and the management practice," Process Safety Progress, vol. 27, pp. 15-20, 2007.
    [139] B. Timmer, W. Olthuis, and A.v.d. Berg, "Ammonia sensors and their applications—a review," Sensors and Actuators B: Chemical, vol. 107, pp. 666-677, 2005.
    [140] M.S. Kanan, M.O. El-Kadri, A.I. Abu-Yousef, and C.M. Kanan, "Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection," Sensors, vol. 9, pp., 2009.
    [141] L.A. Patil, L.S. Sonawane, and D.G. Patil, "Room temperature ammonia gas sensing using MnO2-modified ZnO thick film resistors," Journal of Modern Physics, vol. 2, pp. 1215, 2011.
    [142] H.W. Zan, W.W. Tsai, Y.r. Lo, Y.M. Wu, and Y.S. Yang, "Pentacene-Based Organic Thin Film Transistors for Ammonia Sensing," IEEE Sensors Journal, vol. 12, pp. 594-601, 2012.
    [143] T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, C.F. Chang, P.C. Chou, and W.C. Liu, "On an Ammonia Gas Sensor Based on a Pt/AlGaN Heterostructure Field-Effect Transistor," IEEE Electron Device Letters, vol. 33, pp. 612-614, 2012
    [144] R. Pandeeswari, and B.G. Jeyaprakash, "High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature," Sensors and Actuators B: Chemical, vol. 195, pp. 206-214, 2014.
    [145] F. Lacy, Preparation and Assessment of Thin Films for Use as Ammonia Sensors2013.

    [146] V. Talwar, O. Singh, and R.C. Singh, "ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor," Sensors and Actuators B: Chemical, vol. 191, pp. 276-282, 2014.
    [147] T.-Y. Chen, H.-I. Chen, C.-S. Hsu, C.-C. Huang, J.-S. Wu, P.-C. Chou, and W.-C. Liu, "Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration," Sensors and Actuators B: Chemical, vol. 221, pp. 491-498, 2015.
    [148] J. Wang, P. Yang, and X. Wei, "High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals," ACS Applied Materials & Interfaces, vol. 7, pp. 3816-3824, 2015.
    [149] P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "On the Ammonia Gas Sensing Performance of a RF Sputtered NiO Thin-Film Sensor," IEEE Sensors Journal, vol. 15, pp. 3711-3715, 2015.
    [150] C.-S. Hsu, H.-I. Chen, C.-W. Lin, T.-Y. Chen, C.-C. Huang, P.-C. Chou, and W.-C. Liu, "Ammonia Gas Sensing Performance of an Indium Tin Oxide (ITO) Based Device with an Underlying Au-Nanodot Layer," Journal of The Electrochemical Society, vol. 160, pp. B17-B22, 2013.
    [151] S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, "Room Temperature Ammonia Gas Sensor Based on Polyaniline-TiO2 Nanocomposite," IEEE Sensors Journal, vol. 11, pp. 3417-3423, 2011
    [152] S.-K. Lee, D. Chang, and S.W. Kim, "Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection," Journal of Hazardous Materials, vol. 268, pp. 110-114, 2014.
    [153] G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma, and M. Dudley, "Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing," The Journal of Physical Chemistry B, vol. 110, pp. 23777-23782, 2006.
    [154] K.W. Lin, and C.S. Hsu, "Analysis of Hydrogen Gas Sensing Characteristics Based on a Grey Polynomial Differential Model (GPDM) Algorithm," IEEE Sensors Journal, vol. 11, pp. 1894-1898, 2011.
    [155] S.-Y. Chiu, H.-W. Huang, T.-H. Huang, K.-C. Liang, K.-P. Liu, J.-H. Tsai, and W.-S. Lour, "Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance," Sensors and Actuators B: Chemical, vol. 138, pp. 422-427, 2009.
    [156] S.-Y. Chiu, J.-H. Tsai, H.-W. Huang, K.-C. Liang, T.-H. Huang, K.-P. Liu, T.-M. Tsai, K.-Y. Hsu, and W.-S. Lour, "Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure," Sensors and Actuators B: Chemical, vol. 141, pp. 532-537, 2009.
    [157] S. Lee, Y. Lee, C. Shim, N. Choi, B. Joo, K. Song, J. Huh, and D. Lee, “Three electrodes gas sensor based on ITO thin film,” Sens. Actuators B-Chem., vol. 93(1-3), pp. 31-35, 2003.
    [158] G. Chen, A. H. W. Choi, P. T. Lai, W. M. Tang, “Schottky-diode hydrogen sensor based on InGaN/GaN multiple quantum wells,” Journal of Vacuum Science & Technology B, vol. 32, pp. 011212, 2014.
    [159] F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Applied Surface Science, vol. 253, pp. 9525-9528, 2007.
    [160] T. J. Anderson, H. T. Wang, B. S. Kang, F. Ren, S. J. Pearton, A. Osinsky, A. Dabiran, and P. P. Chow, “Effect of bias voltage polarity on hydrogen sensing with AlGaN/GaN Schottky diodes,” Applied Surface Science, vol. 255, pp. 2524-2526, 2008.
    [161] X. H. Wang, X. L. Wang, C. Feng, H. L. Xiao, C. B. Yang, J. X. Wang, B. Z. Wang, J. X. Ran, and C. M. Wang, “Hydrogen sensors based on AlGaN/AIN/GaN Schottky diodes,” Chinese Physics Letters, vol. 25, pp. 266-269, 2008.
    [162] J. H. Xu, N. Q. Wu, C. B. Jiang, M. H. Zhao, J. Li, Y. G. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobett/Pd Schottky contacts in ammonia,” Small, vol. 2, pp. 1458-1461, 2006.

    下載圖示 校內:2023-06-23公開
    校外:2023-06-23公開
    QR CODE