簡易檢索 / 詳目顯示

研究生: 賴建欣
Lai, Jian-Shin
論文名稱: 內藏型永磁同步馬達磁固耦合分析與設計
Design and Analysis of an Interior Permanent Magnet Synchronous Motor Using Coupled Electromagnetic-Structural Simulation
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 內藏型永磁同步馬達磁固耦合分析結構分析
外文關鍵詞: Interior permanent magnet synchronous motor, coupled electromagnetic-structural simulation
相關次數: 點閱:138下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對內藏型永磁同步馬達(Interior Permanent Magnet Synchronous Motor, IPMSM),以獲得較大操作區間為目的,探討其內部參數對於輸出特性之影響,同時透過電磁與結構耦合模擬分析,評估馬達輸出特性與結構強度,最終得到較佳之設計,並提出一結構修正方法,取代耦合分析來節省模擬時間。
    論文首先針對馬達規格設計,並探討其特性,藉由有限元素分析,改變繞線跨距、繞線匝數、磁鐵強度、電流密度等參數,以分析其操作區間與輸出特性。其次針對結構強度探討,確保在上述得到之操作區間安全運轉,且進一步評估結構與電磁特性,不因增強結構而降低馬達輸出效益。然而耦合模擬十分耗時,為縮短研發時程,因此本文探討僅藉由結構分析,利用修正係數來達到與耦合分析相近之效果,並針對不同規格馬達,歸納出一套方法來節省耦合分析時間。最終以內藏型永磁馬達原型機驗證本研究提出之設計結果。

    The goal of this thesis is to research on interior permanent magnet motors (IPM motors), including analyses for the influence of motor parameters on motor performance and establishment of the relationship between the output characteristics and rotor structural strength using coupled electromagnetic-structural analysis (ANSYS). From the above analyses, an approach is developed to predict the structural safety using solely structural analysis without the time consuming coupled simulation.
    This work first investigates the design of IPM motors concerning motor parameters so that a wide operating range can be achieved. The effect of rotor ribs on IPM motor performance is also discussed to achieve a balance between the rotor strength and electromagnetic performance. This analysis is conducted using coupled electromagnetic-structural simulations since the rotor is subject to both centrifugal force and electromagnetic force. However, the coupled simulations require tremendous computing effort and this would prolong the motor development time frame. Therefore, this thesis presents a method that employs only the structural simulation combining a correction factor to accurately predict the rotor structural safety. This would significantly reduce the computational time spent in coupled simulation. A prototype is then designed, built and tested based on the previous analysis. Then, the experiments validate the design, simulations and the developed approach.

    第一章 緒論 1 1.1 研究背景 1 1.2 永磁同步馬達優勢 2 1.3 馬達種類 3 1.3.1 直流馬達 3 1.3.2 感應馬達 4 1.3.3 磁阻馬達 5 1.3.4 永磁同步馬達 6 1.4 研究動機與目的 9 1.5 論文架構 10 第二章 文獻回顧 11 2.1 內藏型永磁同步馬達 11 2.1.1 內藏式永磁馬達槽極配 13 2.1.2 轉子設計 16 2.2 磁力密度分析 20 2.2.1 諧波分析 24 2.2.2 應力分析 26 2.3 小結 27 第三章 研究方法 28 3.1 IPM馬達基本理論推導 28 3.1.1 弱磁控制 31 3.2 IPM馬達特性分析流程 33 3.2.1 轉子設計與轉矩成份分析 33 3.2.2 d-q軸電感分析與轉矩計算 35 3.2.3 反電動勢、氣隙磁通密度諧波分析 37 3.2.4 結構耦合特性分析 38 3.3 馬克斯威爾方程式 40 第四章 模擬特性分析 44 4.1 IPM轉子規格選用 44 4.1.1 IPM馬達模型設計 45 4.2 V型IPM之設計模型-繞線跨距因數 46 4.2.1 轉矩成份分析 47 4.2.2 T-N曲線與弱磁控制分析 49 4.3 V型IPM之設計模型-繞線匝數因數 50 4.3.1 轉矩成份分析 51 4.3.2 T-N曲線與弱磁控制分析 52 4.4 V型IPM之設計模型-磁鐵強度因數 54 4.4.1 轉矩成份分析 54 4.4.2 T-N曲線與弱磁控制分析 56 4.5 V型IPM之設計模型-電流密度因數 58 4.5.1 轉矩成份分析 58 4.5.2 T-N曲線與弱磁控制分析 60 4.6 V型IPM-電磁與結構耦合分析 61 4.6.1 馬達輸出特性比較 62 4.6.2 肋條對於電磁與結構之關係 65 4.7 轉子尺寸與結構評估 68 4.7.1 轉子尺寸受離心力之應力 68 4.7.2 轉子結構分析與電磁力之修正 70 4.8 原型機之設計 75 4.8.1 模擬材料特性 76 4.8.2 馬達特性分析 77 4.9 內藏型永磁同步馬達設計流程 80 4.10 小結 81 第五章 原型機實驗驗證 82 5.1 原型機加工順序及成品 82 5.1.1 矽鋼片加工 83 5.1.2 定子繞線配置 85 5.1.3 加工完成之原型機 86 5.2 實驗規劃 87 5.2.1 實驗架構 87 5.2.2 原型機測試流程 88 5.3 原型機測試 89 5.3.1 轉子磁通量測 89 5.3.2 反電動勢量測 90 5.3.3 原型機加載測試 91 第六章 結論與建議 96 6.1 結論 96 6.2 建議 98 參考文獻 99

    [1] 王龍雲,巴黎協訂助力綠色經濟,經濟參考報,2015。
    [2] 經濟部能源局,高效率馬達節能效益,節能技術手冊,2010。
    [3] IEC 60034-30-1, “Guide for selection and application of energy efficient motors including variable-speed application, International Electro technical Commission, ” 2011.
    [4] 經濟部能源局,急起直追,2016年與全球先進國家同步,能源報導月刊,2014。
    [5] ABB, “ABB’s new SynRM motor technology will deliver IE5 efficiency without rare earth magnets, ”2014.
    [Online].Available:http://www.abb.com/cawp/seitp202/ad26393b09a61275c1257caf00217a16.aspx
    [6]World Pumps.com, “WEG premieres IE5 permanent-magnet motor at the Hannover fair, ”2014.
    [Online].Available:http://www.worldpumps.com/view/37434/weg-premieres-ie5-permanent-magnet-motor-at-the-hannover-fair/
    [7]Pixnet.net, “The introduction of motor, ”2013.
    [Online].http://eatontseng.pixnet.net/blog/post/102290242-%E7%AC%AC%E5%8D%81%E7%AB%A0%EF%BC%9A%E9%A6%AC%E9%81%94
    [8] Pengky.cn, “Asynchronous motor structure, ”2010.
    [Online].http://www.pengky.cn/dianjixilie022/7-kjdh-jiaoliujijiegou/kjdh-jiaoliujijiegou.html
    [9] National Instruments, “Electric motor simulation toolkit, ”2013.
    [Online].Aviable:http://zone.ni.com/reference/en-XX/help/374169A-01/lvemsimshared/motor_type/
    [10] G. holling, “The reluctance force we are reluctant to use, ”Power transmission engineering, ”2016.
    [Online].Aviable:http://powertransmission.com/blog/the-reluctance-force-we-are-reluctant-to-use/
    [11] H.S. Chen, “Characteristic analysis of an IPM synchronous motor and its application to electric scooters, ”2004.
    [12] Z.Q. Zhu, “Influence of design parameters on cogging torque in permanent magnet machines, ” IEEE Transactions on Energy Conversion, vol. 15, no.4, 2000.
    [13] T. Sun, J.M. Kim, G.H. Lee, J.P. Hong and M.R. Choi, “Effect of pole and slot combination on noise and vibration in permanent magnet synchronous motor, ” IEEE Transactions on Magnetics, vol.47, no.5, 2011.
    [14] T.H. Nguyen, “Design of 10kW interior permanent magnet motor for EV traction, ” National Cheng Kung University Department of Systems and Naval Mechatronic Engineer, 2016.
    [15] Y.U. Park, J.H. Cho,S.G. Song,D.H, Chung,J.Y. So and D.k. Kim, “Study on reducing cogging torque of Interior PM Motor for electric vehicle, ” IEEE Vehicle Power and Propulsion Conference, PP.171-175, 2012.
    [16] J.W. Reu, J. Hur, B.W. Kim and G.H. Kang, “Vibration reduction of IPM type BLDC motor using negative third harmonic elimination method of air-gap flux density, ” IEEE Energy Conversion Congress and Exposition, pp.1745-1752 , 2010.
    [17] M. Barcaro, N. Bianchi and F. Magnussen, “Rotor flux-barrier geometry design to reduce stator iron losses in synchronous IPM motors under FW Operations, ” IEEE Transactions on Industry Applications, pp.1950–1958, 2010.
    [18] S.H. Lee, J.P. Hong, S.M. Hwang, W.T. Lee, J.Y.Lee and Y.K. Kim ,“Optimal design for noise reduction in interior permanent-magnet motor, ” IEEE Transactions on Industry Applications, pp.1954–1960, 2009.
    [19] J.M. Kim, T. Sun, S.H. Lee, D.J. Kim and J.P. Hong,“Evaluation and improved design about acoustic noise and vibration in IPMSM, ” International Conference on Electrical Machines and Systems, pp.1256–1259, 2010.
    [20] D.Y. Kim, G.H. Jang and J.K. Nam, “Magnetically induced vibrations in an IPM motor due to distorted magnetic forces arising from flux weakening control, ” IEEE Transactions on Magnetics, pp.3929-3932, 2013.
    [21] J. Krotsch and B. Piepenbreier, “Radial forces in external rotor permanent magnet synchronous motor with non-overlapping windings, ” IEEE Transactions on Industrial Electronics, vol. 59, no. 5, pp. 2267-2276, 2012.
    [22] J.D. Ede , Z.Q. Zhu and D. Howe, “Rotor resonances of high-speed permanent-magnet brushless machines, ” IEEE Transactions on Industrial Electronics, vol.38, no.6, pp.1542-1548, 2002.
    [23] R. Islam and I. Husain, “Analytical model for predicting noise and vibration in permanent magnet synchronous motors, ” IEEE Energy Conversion Congress and Exposition, pp. 3461 – 3468, 2009.
    [24] T.J. Kim, S.M. Hwang and N.G. Park, “Analysis of vibration for permanent magnet motors considering mechanical and magnetic coupling effects, ” IEEE Transactions Magnetics, vol. 36, pp. 1346-1350, 2000.
    [25] S.K. Lee, G.H. Kang and J. Hur, “Analysis of radial forces in 100kW IPM machines for ship considering stator and rotor eccentricity, ” International Conference on Power Electronics and ECCE Asia, 2011.
    [26] Z.Q. Zhu, Z.P. Xia, L.J. Wu and G.W. Jewell, “Influence of slot and pole number combination on radial force and vibration modes in fractional slot PM brushless machine having single-and double-layer windings, ” IEEE Energy Conversion Congress and Exposition, pp.3443-3450, 2009.
    [27] Z.Q. Zhu, Z.P. Xia, L.J. Wu and G.W. Jewell, “Analysis of vibration for permanent magnet motors considering mechanical and magnetic coupling effects, ” IEEE Energy Conversion Congress and Exposition, pp.3443-3450, 2009.
    [28] Z.Q. Zhu, Z.P. Xia, L.J. Wu and G.W. Jewell, “Analytical modelling and finite element computation of radial vibration force in fractional-slot permanent magnet brushless machines, ” Electric Machines and Drives Conference, pp.144-151, 2009.
    [29] F. Chai and Y. Li, Y. Pei, “Calculation of the maximum mechanical stress on the rotor of interior permanent-magnet synchronous motor, ” IEEE Transactions on Industrial Electronics, Vol. 63, pp.3420 – 3432, 2016.
    [30] J.W. Jung, B.H. Lee, D.J. Kim, J.P. Hong, J.Y. Kim, S.M. Jeon and D.H. Song, “Mechanical stress reduction of rotor core of interior permanent magnet synchronous motor, ” IEEE Transaction on Magnetics, vol. 48, pp.911 – 914, 2012.
    [31] Y. Li, Y. Pei, P. Liang and F. Chai, “Analysis of the rotor mechanical strength of interior permanent magnet synchronous in-wheel motor with high speed and large torque, ” Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014.
    [32] M.A. Jabbar, Khambadkone, A.M and L. Q. hua, “Design and analysis of exterior and interior type high-speed permanent magnet motors, ” Australasian Universities Power Engineering Conference (AUPEC), pp. 472-476, 2001.
    [33] W.L. Soong and T.j.E. miller, “Field-Weakening Performance of Brushless Synchronous AC motor Drive, ” IEEE proceedings-Electric Power Applications, 2002.
    [34] “諧波”,2014。
    [Online].Aviable:http://pic.baike.soso.com/p/20130617/20130617155207-64261803.jpg
    [35] David. K Cheng, Fundamentals of engineering electromagnetics, First ed.:PEARSON, 2015.

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE