簡易檢索 / 詳目顯示

研究生: 吳孟衡
Wu, Meng-Heng
論文名稱: 製備馬來酸酐與離子改質聚丙烯並應用於功能性聚丙烯添加劑之研究
Preparation of maleated and ionically modified polypropylene and its application as an additive for functional polypropylene
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 馬來酸酐離子改質結晶助劑相容助劑發泡助劑
外文關鍵詞: maleic anhydride, ionic modification, crystallinity additive, compatibility agent, foaming additive
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用化學法對聚丙烯(PP)進行改質,並將其作為添加劑加入PP中以提升其結晶及相容性質。首先,本研究利用溶液法製備無規聚丙烯(aPP)接枝馬來酸酐(MAH)的改質aPP(簡稱aPP-g-MAH),並使用己內醯胺(Cap)作為促進劑,提升其改質率。經反射式紅外線光譜(FTIR-ATR)與元素分析(EA)等檢測MAH於aPP上的接枝量可達5.03 wt%;經尺寸排除色譜法(SEC)分析其分子量,發現Cap的添加有助於在接枝反應時抑制副反應-斷鏈反應(β-scission)的發生,使分子量不會急遽降低。進一步地,將aPP-g-MAH分別引入PP與PP/尼龍6 (PP/PA6)混摻物中作為結晶助劑以及相容助劑。由微示差掃描熱卡分析(DSC)熱流顯示,PP/aPP-g-MAH混摻物結晶溫度由114.0 ℃提升至115.3 ℃;此外,經POM觀察證實PP/aPP-g-MAH的球晶大小相較於PP明顯縮小,此結果說明aPP-g-MAH可作為PP良好的結晶成核劑。另當aPP-g-MAH作為相容助劑添加於PP/PA6混摻材料時,由掃描式電子顯微鏡(SEM)觀察其冷凍破裂面結果顯示,PP/PA6/aPP-g-MAH混摻材料具有良好的相容性,且PP於PP/PA6/aPP-g-MAH中的結晶溫度也較原始PP高出6.4 ℃,此結果也顯示aPP-g-MAH於PP/PA6中不僅可作為相容助劑,同樣也具有結晶助劑的效果。
    另一方面,本研究以鋅離子進行PP-g-MAH離子改質(稱為PP-g-MAHZn)。改質物藉由FTIR-ATR的特徵峰位置及X射線光電子能譜(XPS)的結合能位移證實具有羧酸鋅螯合鍵結結構生成,由DSC熱流變化可以觀察到隨著羧酸鋅螯合鍵結的數量增加,其結晶度有降低的趨勢;此外,經流變儀分析結果顯示,PP-g-MAHZn的剪切黏度與儲存模數也隨著羧酸鋅螯合鍵結的數量增加而提升,此現象是由於高分子鏈間的離子相互作用力所致。進一步地,本研究將PP-g-MAHZn添加於PP中作為PP超臨界二氧化碳進行發泡的發泡助劑。添加PP-g-MAHZn的PP混摻材料相較於原始PP展現高剪切黏度與高儲存模數等特性,PP/PP-g-MAHZn發泡體經SEM觀察其冷凍斷裂面顯示,PP/PP-g-MAHZn發泡體相較於PP發泡體具較高閉孔泡比例、較均勻的泡孔大小以及較高的泡孔密度,此結果歸因於PP-g-MAHZn的添加有助於提升PP於發泡時的泡孔結構體強度。此外,PP-g-MAHZn於PP中優良的分散性也使其成為良好的發泡成核點與提高熔體強度,成功地製備出高性能的PP發泡材。

    Atactic polypropylene grafted maleic anhydride (aPP-g-MAH) with ε-caprolactam promoter was prepared in this study. The degree of grafting of aPP-g-MAH could be achieved at 5.03 wt% when ε-caprolactam was added as the radical protecting agent through FTIR-ATR and elemental analysis. aPP-g-MAH was then introduced to polypropylene (PP) and PP/Nylon6 as a nucleation and compatibility agent, respectively. The aPP-g-MAH was an excellent nucleating agent for PP via the results of thermal and optical analysis. When aPP-g-MAH was added as a compatibility agent for PP/Nylon6 blending, the compatibility between PP and Nylon6 was elevated. Furthermore, the crystallization temperatures of PP/Nylon6/ aPP-g-MAH blends were higher than that of pure PP. These findings reveal that aPP-g-MAH is a good nucleation and compatibility agent in PP/Nylon6 blends. Next, polypropylene-graft-maleic anhydride (PP-g-MAH) ionically modified with zinc(II) (PP-g-MAHZn) in varying amounts of ionic associations were prepared. The formation of zinc carboxylates in PP-g-MAHZn was confirmed by FTIR-ATR and X-ray photoelectron spectroscopy. Due to the formation of zinc carboxylates, the chain mobility was restricted by ionic interactions between polymer chains and aggregations of ionic domains. Therefore, the decreased crystallinity, gradually increased viscosities, and storage modulus were investigated by thermal and rheological analysis. Furthermore, to promote the foamability of PP, PP-g-MAHZn was introduced as an additive. Higher viscosities and storage modulus compared with pristine PP was displayed in the blends. In addition, the blends were foamed by supercritical CO2. PP/PP-g-MAHZn foams presented high closed-cell content, uniformity of cells, and increasing cell density owing to the combined effects of rheological properties and good dispersion of the PP-g-MAHZn as nucleating sites. These results reveal that PP-g-MAHZn is a suitable additive to produce high melt strength PP for foam production.

    中文摘要 I Abstract III 目 錄 XVIII 表目錄 XXIII 圖目錄 XXIV 第 1 章 緒論 1 第 2 章 文獻回顧 3 2-1 馬來酸酐改質聚丙烯 3 2-1-1馬來酸酐改質聚丙烯反應機制 4 2-1-2馬來酸酐改質聚丙烯製程 6 2-1-3 提升馬來酸酐接枝率方式 7 2-1-4馬來酸酐接枝率之計算方式 13 2-2 功能性聚丙烯 14 2-2-1 聚丙烯/尼龍6混摻材料 14 2-2-2 高熔體強度聚丙烯 18 2-3 研究方法與目的 31 2-3-1 馬來酸酐改質無規聚丙烯 31 2-3-2 離子改質聚丙烯 32 第 3 章 材料與實驗方法 33 3-1 實驗藥品及材料 33 3-2 儀器設備 34 3-3實驗步驟 35 3-3-1以溶液法製備無規聚丙烯接枝馬來酸酐 35 3-3-2以無規聚丙烯接枝馬來酸酐為聚丙烯結晶助劑 38 3-3-3以無規聚丙烯接枝馬來酸酐為聚丙烯與尼龍6之相容助劑 38 3-3-4以熔融法製備離子改質聚丙烯 39 3-3-5以離子改質聚丙烯為聚丙烯之添加劑製備高熔體強度聚丙烯 40 3-3-6聚丙烯與高熔體強度聚丙烯之超臨界發泡 41 3-4 儀器分析方法 41 3-4-1 傅立葉紅外線光譜分析 (FTIR) 41 3-4-2 元素分析 (EA) 42 3-4-3接觸角測定 (CA) 42 3-4-4 熱重分析 (TGA) 42 3-4-5 微示差掃描熱卡分析 (DSC) 42 3-4-6 偏光顯微鏡分析 (POM) 42 3-4-7 掃描式電子顯微鏡分析 (SEM) 43 3-4-8 流變性質分析 43 3-4-9 比重量測分析 43 3-4-10 泡孔密度分析 44 第 4 章 結果與討論 45 4-1 無規聚丙烯接枝馬來酸酐 45 4-1-1 有無添加己內醯胺於無規聚丙烯接枝馬來酸酐之影響 45 4-1-2 以不同溶劑為反應介質對無規聚丙烯接枝馬來酸酐之影響 49 4-1-3 探討無規聚丙烯接枝馬來酸酐之接枝量 51 4-1-4反應溫度對無規聚丙烯接枝馬來酸酐之影響 53 4-2 無規聚丙烯接枝馬來酸酐作為結晶助劑之應用 55 4-2-1 無規聚丙烯接枝馬來酸酐之結晶行為 55 4-2-2無規聚丙烯接枝馬來酸酐混摻聚丙烯之熱性質與結晶行為 56 4-3無規聚丙烯接枝馬來酸酐作為相容助劑之應用 61 4-3-1無規聚丙烯接枝馬來酸酐混摻聚丙烯/尼龍6之熱性質與相容狀況 61 4-3-2無規聚丙烯接枝馬來酸酐混摻聚丙烯/尼龍6纖維染色分析 68 4-4製備離子改質聚丙烯 70 4-4-1離子改質聚丙烯的鑑定 70 4-4-2離子改質聚丙烯的XPS分析 72 4-5離子改質聚丙烯之物理性質 74 4-5-1離子改質聚丙烯之熱性質與結晶行為 74 4-5-2離子改質聚丙烯之流變行為 78 4-6離子改質聚丙烯混摻聚丙烯 84 4-6-1離子改質聚丙烯混摻聚丙烯之熱性質與結晶行為 84 4-6-2離子改質聚丙烯混摻聚丙烯之流變行為 88 4-7離子改質聚丙烯混摻聚丙烯之超臨界發泡試驗 92 4-7-1離子改質聚丙烯混摻聚丙烯可發泡性之研究 92 第 5 章 結 論 97 第 6 章 參考文獻 99 第 7 章 發表著作 112

    1. García‐Martínez, J.M., O. Laguna, and E. Collar, Role of reaction time in batch process modification of atactic polypropylene by maleic anhydride in melt. Journal of applied polymer science, 1997. 65(7): p. 1333-1347.
    2. García‐Martínez, J.M., O. Laguna, and E. Collar, Chemical modification of polypropylenes by maleic anhydride: influence of stereospecificity and process conditions. Journal of applied polymer science, 1998. 68(3): p. 483-495.
    3. Bettini, S. and J. Agnelli, Evaluation of methods used for analysing maleic anhydride grafted onto polypropylene by reactive processing. Polymer testing, 2000. 19(1): p. 3-15.
    4. Li, Y., X.-M. Xie, and B.-H. Guo, Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene. Polymer, 2001. 42(8): p. 3419-3425.
    5. Zhang, M., et al., Synthesis and characterization of maleic anhydride grafted polypropylene with a well-defined molecular structure. Macromolecules, 2013. 46(11): p. 4313-4323.
    6. Oromiehie, A., H. Ebadi-Dehaghani, and S. Mirbagheri, Chemical modification of polypropylene by maleic anhydride: melt grafting, characterization and mechanism. International Journal of Chemical Engineering and Applications, 2014. 5(2): p. 117.
    7. Chung, T., D. Rhubright, and G. Jiang, Synthesis of polypropylene-graft-poly (methyl methacrylate) copolymers by the borane approach. Macromolecules, 1993. 26(14): p. 3467-3471.
    8. Wong, B. and W. Baker, Melt rheology of graft modified polypropylene. Polymer, 1997. 38(11): p. 2781-2789.
    9. Yu, H.-Y., et al., Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid. Journal of Membrane Science, 2006. 281(1-2): p. 658-665.
    10. Chung, T. and D. Rhubright, Polypropylene-graft-polycaprolactone: Synthesis and applications in polymer blends. Macromolecules, 1994. 27(6): p. 1313-1319.
    11. Tidjani, A., et al., Polypropylene–graft–maleic anhydride-nanocomposites: I—Characterization and thermal stability of nanocomposites produced under nitrogen and in air. Polymer Degradation and Stability, 2003. 82(1): p. 133-140.
    12. Park, S.J., B.K. Kim, and H.M. Jeong, Morphological, thermal and rheological properties of the blends polypropylene/nylon-6, polypropylene/nylon-6/(maleic anhydride-g-polypropylene) and (maleic anhydride-g-polypropylene)/nylon-6. European polymer journal, 1990. 26(2): p. 131-136.
    13. Tedesco, A., et al., Comparative study of PP-MA and PP-GMA as compatibilizing agents on polypropylene/nylon 6 blends. Polymer testing, 2002. 21(1): p. 11-15.
    14. Abacha, N. and S. Fellahi, Synthesis of polypropylene‐graft‐maleic anhydride compatibilizer and evaluation of nylon 6/polypropylene blend properties. Polymer international, 2005. 54(6): p. 909-916.
    15. Chen, Q., et al., Preparation and reaction kinetics of polypropylene‐graft‐cardanol by reactive extrusion and its compatibilization on polypropylene/polystyrene. Journal of Applied Polymer Science, 2014. 131(4).
    16. Parameswaranpillai, J., et al., The effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends. Journal of polymer research, 2015. 22(2): p. 2.
    17. Yeo, J.-S. and S.-H. Hwang, Preparation and characteristics of polypropylene-graft-maleic anhydride anchored micro-fibriled cellulose: its composites with polypropylene. Journal of Adhesion Science and Technology, 2015. 29(3): p. 185-194.
    18. Tian, Z., L. Pan, and Q. Pan, Polypropylene grafted with maleic anhydride and styrene as a compatibilizer for biodegradable poly (propylene carbonate)/polypropylene. Journal of Engineered Fibers and Fabrics, 2019. 14: p. 1558925019849714.
    19. Hu, Y.H., et al., Living polymerization of styrene initiated by mercaptan/ε‐caprolactam. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(19): p. 4976-4993.
    20. Hung, C.-Y., C.-C. Wang, and C.-Y. Chen, Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer, 2013. 54(7): p. 1860-1866.
    21. Wu, C.P., C.C. Wang, and C.Y. Chen, Enhancing the PLA crystallization rate by incorporating a polystyrene‐block‐poly (methyl methacrylate) block copolymer: Synergy of polystyrene and poly (methyl methacrylate) segments. Journal of Polymer Science Part B: Polymer Physics, 2014. 52(12): p. 823-832.
    22. Wu, C.-P., C.-C. Wang, and C.-Y. Chen, Influence of asymmetric ratio of polystyrene-block-poly (methyl methacrylate) block copolymer on the crystallization rate of PLA. European Polymer Journal, 2015. 66: p. 160-169.
    23. Wu, C.-P., C.-C. Wang, and C.-Y. Chen, Investigation of mercaptan/ε-caprolactam initiated bulk copolymerization of methyl methacrylate with vinyl monomers. Journal of Polymer Research, 2019. 26(4): p. 94.
    24. Sclavons, M., et al., Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer, 2005. 46(19): p. 8062-8067.
    25. Zhu, Y., L. An, and W. Jiang, Monte Carlo simulation of the grafting of maleic anhydride onto polypropylene at higher temperature. Macromolecules, 2003. 36(10): p. 3714-3720.
    26. Bettini, S. and J. Agnelli, Grafting of maleic anhydride onto polypropylene by reactive extrusion. Journal of Applied polymer science, 2002. 85(13): p. 2706-2717.
    27. Santos, E.A.G.d.l., M.J.L. Gonzalez, and M.C. Gonzalez, Modification of polypropylene with maleic anhydride: Ultrasonic irradiation effects. Journal of applied polymer science, 1998. 68(1): p. 45-52.
    28. Sathe, S.N., G.S. Rao, and S. Devi, Grafting of maleic anhydride onto polypropylene: Synthesis and characterization. Journal of applied polymer science, 1994. 53(2): p. 239-245.
    29. Augier, S., et al., Coagent assisted polypropylene radical functionalization: monomer grafting modulation and molecular weight conservation. Polymer, 2006. 47(15): p. 5243-5252.
    30. Coiai, S., et al., Control of degradation of polypropylene during its radical functionalisation with furan and thiophene derivatives. Polymer Degradation and Stability, 2010. 95(3): p. 298-305.
    31. Ni, Q.L., et al., Enhancement of graft yield and control of degradation during polypropylene maleation in the presence of polyfunctional monomer. Journal of Applied Polymer Science, 2011. 121(5): p. 2512-2517.
    32. Luo, W., X. Liu, and Y. Fu, Melt grafting of maleic anhydride onto polypropylene with assistance of α‐methylstyrene. Polymer Engineering & Science, 2012. 52(4): p. 814-819.
    33. Zhu, Y., et al., Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate. Journal of Polymer Research, 2015. 22(3): p. 35.
    34. Wu, C.J., et al., A kinetic study on grafting of maleic anhydride onto a thermoplastic elastomer. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(13): p. 3405-3415.
    35. Ghaemy, M. and S. Roohina, Grafting of maleic anhydride on polyethylene in a homogeneous medium in the presence of radical initiators. 2003.
    36. Bhattacharya, A., S. Mondal, and A. Bandyopadhyay, Maleic anhydride grafted atactic polypropylene as exciting new compatibilizer for poly (ethylene-co-octene) organically modified clay nanocomposites: investigations on mechanical and rheological properties. Industrial & Engineering Chemistry Research, 2013. 52(39): p. 14143-14153.
    37. Kučera, F., et al., Controlled reactive modification of polypropylene with maleic anhydride via solvent-free technique. Polymer Degradation and Stability, 2019. 168: p. 108934.
    38. Krause-Sammartino, L., et al., Maleic anhydride grafting of polypropylene: peroxide and solvent effects. Plastics, rubber and composites, 2006. 35(3): p. 117-123.
    39. Gaylord, N.G. and M.K. Mishra, Nondegradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides. Journal of Polymer Science: Polymer Letters Edition, 1983. 21(1): p. 23-30.
    40. Roeder, J., et al., Polypropylene/polyamide-6 blends: influence of compatibilizing agent on interface domains. Polymer testing, 2002. 21(7): p. 815-821.
    41. Sathe, S.N., et al., Relationship between morphology and mechanical properties of binary and compatibilized ternary blends of polypropylene and nylon 6. Journal of Applied Polymer Science, 1996. 61(1): p. 97-107.
    42. Tucker, J.D., S. Lee, and R.L. Einsporn, A study of the effect of PP‐g‐MA and SEBS‐g‐MA on the mechanical and morphological properties of polypropylene/nylon 6 blends. Polymer Engineering & Science, 2000. 40(12): p. 2577-2589.
    43. García‐Martínez, J.M. and E.P. Collar, Industrial waste origin succinic anhydride‐grafted atactic polypropylene as compatibilizer of full range polypropylene/polyamide 6 blends as revealed by dynamic mechanical analysis at the polypropylene glass transition. Polymer Engineering & Science, 2019. 59(12): p. 2458-2466.
    44. Collar, E., et al., Understanding the Morphological Changes in the Polypropylene/Polyamide 6 Fifty/Fifty Blends by Interfacial Modifiers Based on Grafted Atactic Polypropylenes: Microscopic, Mechanical, and Thermal Characterization. Journal of Polymers, 2015. 2015.
    45. Huang, H.X. and J.K. Wang, Improving polypropylene microcellular foaming through blending and the addition of nano‐calcium carbonate. Journal of Applied Polymer Science, 2007. 106(1): p. 505-513.
    46. Li, Y., et al., High melt strength polypropylene by ionic modification: Preparation, rheological properties and foaming behaviors. Polymer, 2015. 70: p. 207-214.
    47. Mohebbi, A., et al., Current issues and challenges in polypropylene foaming: a review. Cellular Polymers, 2015. 34(6): p. 299-338.
    48. Yang, C.-G., et al., Supercritical CO2 foaming of radiation cross-linked isotactic polypropylene in the presence of TAIC. Molecules, 2016. 21(12): p. 1660.
    49. Yang, C., et al., Radiation effects on the foaming of atactic polypropylene with supercritical carbon dioxide. Radiation Physics and Chemistry, 2017. 131: p. 35-40.
    50. Zhai, W., et al., Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming. Polymer Engineering & Science, 2008. 48(7): p. 1312-1321.
    51. Li, Y., et al., Numerical simulation of polypropylene foaming process assisted by carbon dioxide: Bubble growth dynamics and stability. Chemical Engineering Science, 2011. 66(16): p. 3656-3665.
    52. Jiang, X.-L., et al., Microcellular foaming of polypropylene/clay nanocomposites with supercritical carbon dioxide. Journal of Cellular Plastics, 2009. 45(6): p. 515-538.
    53. Zheng, W., Y. Lee, and C. Park, Use of nanoparticles for improving the foaming behaviors of linear PP. Journal of applied polymer science, 2010. 117(5): p. 2972-2979.
    54. Ding, J., et al., Foaming behavior of microcellular foam polypropylene/modified nano calcium carbonate composites. Journal of applied polymer science, 2013. 128(6): p. 3639-3651.
    55. Wang, C., S. Ying, and Z. Xiao, Preparation of short carbon fiber/polypropylene fine-celled foams in supercritical CO2. Journal of Cellular Plastics, 2013. 49(1): p. 65-82.
    56. Park, C.B. and L.K. Cheung, A study of cell nucleation in the extrusion of polypropylene foams. Polymer Engineering & Science, 1997. 37(1): p. 1-10.
    57. Sugimoto, M., et al., Effect of chain structure on the melt rheology of modified polypropylene. Journal of Applied Polymer Science, 1999. 73(8): p. 1493-1500.
    58. Spitael, P. and C.W. Macosko, Strain hardening in polypropylenes and its role in extrusion foaming. Polymer Engineering & Science, 2004. 44(11): p. 2090-2100.
    59. Nam, G., J. Yoo, and J. Lee, Effect of long‐chain branches of polypropylene on rheological properties and foam‐extrusion performances. Journal of Applied Polymer Science, 2005. 96(5): p. 1793-1800.
    60. Yu, C., et al., Evaluating the foamability of polypropylene with nitrogen as the blowing agent. Polymer Testing, 2011. 30(8): p. 887-892.
    61. Xu, Z., et al., Investigation of extensional rheological behaviors of polypropylene for foaming. Journal of Cellular Plastics, 2013. 49(4): p. 317-334.
    62. Kuboki, T., Foaming behavior of cellulose fiber-reinforced polypropylene composites in extrusion. Journal of Cellular Plastics, 2014. 50(2): p. 113-128.
    63. Zhang, P., et al., Effect of dynamic shear on the microcellular foaming of polypropylene/high‐density polyethylene blends. Journal of applied polymer science, 2009. 114(2): p. 1320-1328.
    64. Zhai, W. and C.B. Park, Effect of nanoclay addition on the foaming behavior of linear polypropylene‐based soft thermoplastic polyolefin foam blown in continuous extrusion. Polymer Engineering & Science, 2011. 51(12): p. 2387-2397.
    65. Yu, K., et al., Evolution of double crystal melting peak in polypropylene foam assisted by β‐nucleating agent and supercritical CO2. Journal of Applied Polymer Science, 2018. 135(12): p. 46007.
    66. Raidt, T., et al., Chemical Cross‐linking of Polypropylenes Towards New Shape Memory Polymers. Macromolecular rapid communications, 2015. 36(8): p. 744-749.
    67. Raidt, T., et al., Ionically cross-linked shape memory polypropylene. Macromolecules, 2016. 49(18): p. 6918-6927.
    68. Raidt, T., et al., Multiaxial Reinforcement of Cross‐Linked Isotactic Poly (propylene) upon Uniaxial Stretching. Macromolecular Materials and Engineering, 2017. 302(1): p. 1600308.
    69. Sato, Y., et al., Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid phase equilibria, 1999. 162(1-2): p. 261-276.
    70. Wu, M.-H., C.-C. Wang, and C.-Y. Chen, Chemical modification of atactic polypropylene and its applications as a crystallinity additive and compatibility agent. Polymer, 2020: p. 122386.
    71. De Roover, B., et al., Molecular characterization of maleic anhydride‐functionalized polypropylene. Journal of Polymer Science Part A: Polymer Chemistry, 1995. 33(5): p. 829-842.
    72. Morra, M., E. Occhiello, and F. Garbassi, Contact angle hysteresis on oxygen plasma treated polypropylene surfaces. Journal of Colloid and Interface Science, 1989. 132(2): p. 504-508.
    73. Bhattacharyya, A.R., et al., Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer, 2003. 44(8): p. 2373-2377.
    74. Seo, Y., et al., Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer, 2000. 41(7): p. 2639-2646.
    75. Chen, J.-H., et al., Isothermal crystallization of isotactic polypropylene blended with low molecular weight atactic polypropylene. Part I. Thermal properties and morphology development. Polymer, 2005. 46(15): p. 5680-5688.
    76. Rousseaux, D.D., et al., Polypropylene ionic thermoplastic elastomers: Synthesis and properties. Polymer degradation and stability, 2010. 95(3): p. 363-368.
    77. Felthouse, T.R., et al., Maleic anhydride, maleic acid, and fumaric acid. Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
    78. Kiatkamjornwong, S., K. Mongkolsawat, and M. Sonsuk, Synthesis and property characterization of cassava starch grafted poly [acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer, 2002. 43(14): p. 3915-3924.
    79. Antony, P., S. Bandyopadhyay, and S. De, Thermoplastic elastomers based on ionomeric polyblends of zinc salts of maleated polypropylene and maleated EPDM rubber. Polymer Engineering & Science, 1999. 39(5): p. 963-974.
    80. Antony, P. and S. De, The effect of zinc stearate on melt-processable ionomeric blends based on zinc salts of maleated high-density polyethylene and maleated EPDM rubber. Polymer, 1999. 40(6): p. 1487-1493.
    81. Li, Y., et al., Characterization of the cell− Fe mineral aggregate from nitrogen removal employing ferrous and its adsorption features to heavy metal. Journal of Cleaner Production, 2017. 156: p. 538-548.
    82. Hayashimto, Y., W. Sakamoto, and T. Yogo, Synthesis of nickel zinc ferrite nanoparticle/organic hybrid from metalorganics. Journal of materials research, 2007. 22(7): p. 1967-1974.
    83. Salavati-Niasari, M., F. Davar, and Z. Fereshteh, Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor. Chemical engineering journal, 2009. 146(3): p. 498-502.
    84. Kim, B. and K. Kim, Cross‐Linking of polypropylene by peroxide and multifunctional monomer during reactive extrusion. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 1993. 12(3): p. 263-269.
    85. Yu, J. and J. He, Crystallization kinetics of maleic anhydride grafted polypropylene ionomers. Polymer, 2000. 41(3): p. 891-898.
    86. Weiss, R. and W.-C. Yu, Viscoelastic behavior of very lightly sulfonated polystyrene ionomers. Macromolecules, 2007. 40(10): p. 3640-3643.
    87. Page, K.A., et al., Direct analysis of the ion-hopping process associated with the α-relaxation in perfluorosulfonate ionomers using quasielastic neutron scattering. Macromolecules, 2009. 42(7): p. 2729-2736.
    88. Aitken, B.S., et al., Precision ionomers: Synthesis and thermal/mechanical characterization. Macromolecules, 2012. 45(2): p. 681-687.
    89. Menyhárd, A., G. Faludi, and J. Varga, β-Crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. Journal of thermal analysis and calorimetry, 2008. 93(3): p. 937-945.
    90. Wang, X., C. Tzoganakis, and G.L. Rempel, Chemical modification of polypropylene with peroxide/pentaerythritol triacrylate by reactive extrusion. Journal of Applied Polymer Science, 1996. 61(8): p. 1395-1404.
    91. Bouza, R., et al., Effect of particle size and a processing aid on the crystallization and melting behavior of iPP/red pine wood flour composites. Composites Part A: Applied Science and Manufacturing, 2011. 42(8): p. 935-949.
    92. Landoll, L. and D. Breslow, Polypropylene ionomers. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(7): p. 2189-2201.
    93. Fujiyama, M., et al., Rheological properties of ionically and covalently crosslinked polypropylene‐type thermoplastic elastomers. Journal of applied polymer science, 2002. 85(4): p. 762-773.
    94. Romani, F., et al., Monitoring the chemical crosslinking of propylene polymers through rheology. Polymer, 2002. 43(4): p. 1115-1131.
    95. Dalmas, F. and E. Leroy, New Insights into Ionic Aggregate Morphology in Zn-Neutralized Sulfonated Polystyrene Ionomers by Transmission Electron Tomography. Macromolecules, 2011. 44(20): p. 8093-8099.
    96. Fu, L., et al., Improved cell nucleating effect of partially melted crystal structure to enhance the microcellular foaming and impact properties of isotactic polypropylene. The Journal of Supercritical Fluids, 2020. 160: p. 104794.
    97. Vallejo, F., J. Eguiazábal, and J. Nazábal, Compatibilization of PP/Vectra B “in situ” composites by means of an ionomer. Polymer, 2000. 41(16): p. 6311-6321.

    下載圖示
    2025-12-15公開
    QR CODE