簡易檢索 / 詳目顯示

研究生: 王富民
Wang, Fu-Ming
論文名稱: 三明治蜂窩結構受爆炸荷載下動態響應及損傷分析
Dynamic Response and Damage Assessment of Honeycomb Sandwich Structures Subjected to Blast Loads
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 戴毓修
Tai, Yuh-Shiou
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 爆炸荷載ABAQUS三明治蜂窩結構P-I曲線
外文關鍵詞: blast loading, ABAQUS, honeycomb sandwich structure, Pressure-Impulse(P-I) curve
相關次數: 點閱:142下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三明治蜂窩結構為複合材料結構,因其具有質量輕盈、良好緩衝吸能、高強度、用料節省等的優點,被廣泛應用至航太、軍事等結構。而在軍事應用上,蜂窩結構將有效提高結構對外力衝擊上之抗衝擊性及防爆性能,而在爆炸荷載後,也需評估結構構件在爆炸荷載下產生之損傷破壞。
    本文針對受爆炸荷載下之三明治蜂窩板,依序介紹修正後之理論公式,並使用有限元素軟體ABAQUS,進行模擬分析,與理論公式及實驗數據對比,具有一致性,並透過底板中心位移及能量歷時探討其動態響應,以及透過不同幾何參數的考量,描述對結構的影響,最後以結構受爆炸荷載後之剩餘承載力為損傷破壞指標,經過大量的數值計算,得出壓力-衝量曲線(P-I curve),可象徵不同壓力、衝量荷載下,三明治蜂窩板之損傷程度。
    三明治蜂窩板需考慮脫層因素,若面板與芯材間發生脫層,誤差在位移上可達30~40%,而在幾何參數之考量,調整面板厚度及芯材壁厚,以改動面板厚度質量性能比較佳。受爆炸荷載後之三明治蜂窩板,可由剩餘承載力作為良好的損傷破壞指標,並且由擬合公式可以快速的繪製P-I曲線,在數點數值驗證上其依靠擬合公式得出之結果十分可靠。

    Honeycomb sandwich structure is widely used in aerospace and military engineering due to its quality of light, good energy absorption… etc. Also, be used in military engineering, it can efficiently improve the resistance against blast loading. After blast impulse, we need to measure the damage that occurred during the explosion.
    The thesis focuses on the honeycomb sandwich panel that has been through the explosion impact. It introduces modified theoretical formula, and uses finite element analysis software ABAQUS to operate the simulate analysis. The report shows that the results of two different methods match each other. Also, by observing the displacement of bottom plate center point and energy-time diagram, we are able to discuss its dynamic response. There will be different results by changing geometric parameter. At last, we can determine the damage index which relies on the residual bearing force subjected to blast loading. Through a large amount of numerical simulation, we can get Pressure-Impulse (P-I) curve, which indicates the damage assessment of honeycomb sandwich panel under varying pressure and impact.
    Delamination is considered as an important issue for honeycomb sandwich panel under blast loading. If there is delamination between plates and core, the error of displacement can be up to 30 to 40%. Taking geometric parameter as consideration, varying plate thickness gives better effect than varying cell thickness. Residual bearing force becomes a good damage index for honeycomb sandwich panel subjected to blast loading. We can use fitting formula to efficiently create a P-I curve, and the result is reliable which is proven by simulation.

    摘要 i 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xii 符號說明 xiii 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 蜂窩結構的動態行為 2 1.2.2 結構受爆炸荷載下的損傷分析 6 1.3 研究方法與目的 7 1.4 論文架構 7 第2章 三明治蜂窩板受爆炸荷載之理論分析 8 2.1 爆炸壓力波之特徵與模擬 8 2.1.1 爆炸壓力波簡述 8 2.1.2 爆炸壓力波之數值模擬 10 2.2 蜂窩板受爆炸荷載下之理論分析 12 2.2.1 蜂窩幾何架構與特性 12 2.2.2 蜂窩結構之機械性質 15 2.2.3 蜂窩板受爆炸荷載之理論 18 2.2.4 理論分析 20 第3章 三明治蜂窩板受爆炸荷載之數值模擬分析 25 3.1 有限元素法(Finite Element Method,FEM) 25 3.2 三明治蜂窩板數值模型設定 26 3.2.1 三明治蜂窩板數值模型描述 26 3.2.2 材料機械性質 28 3.2.3 材料損傷[26] 28 3.2.4 接觸條件 37 3.3 模擬分析結果與討論 43 3.3.1 收斂性分析 43 3.3.2 模型驗證 46 3.3.3 比較實驗與模擬數據 47 3.3.4 不同參數模擬分析比較 55 第4章 三明治蜂窩板受爆炸荷載之損傷評估 66 4.1 受爆炸荷載下動態響應理論分析 66 4.1.1 理想彈性單自由度結構構件[33] 66 4.1.2 構件受不同類型爆炸荷載下之動態響應[33] 69 4.2 壓力-衝量曲線(Pressure-Impusle curve) 72 4.2.1 能量法 72 4.2.2 數值模擬法 74 4.3 損傷模擬分析 77 4.3.1 破壞評定 77 4.3.2 分析流程 78 4.3.3 分析結果 81 第5章 結論與建議 86 5.1 結論 86 5.2 未來研究之方向與建議 87 參考文獻 88 附錄A Abaqus input檔 (考慮脫層模型) 91

    [1] L. J. Gibson and M. F. Ashby, Cellular Solid: Structure and Properties, 2nd ed. Cambridge U.K.: Cambridge University Press, 1997.
    [2] W. Goldsmith and J. L. Sackman, "An experimental study of energy absorption in impact on sandwich plates," International Journal of Impact Engineering, vol. 12, pp. 241-262, 1992.
    [3] a. B. V. S. R. Ferri, "A comparative study on the impact resistance of composite laminates and sandwich panels," Journal of Thermoplastic Composite Materials, vol. 10, pp. 304-315, 1997.
    [4] J. P. Dear, H. Lee, and S. A. Brown, "Impact damage processes in composite sheet and sandwich honeycomb materials," International Journal of Impact Engineering, vol. 32, pp. 130-154, 2005.
    [5] W. Hou, F. Zhu, G. Lu, and D.-N. Fang, "Ballistic impact experiments of metallic sandwich panels with aluminium foam core," International Journal of Impact Engineering, vol. 37, pp. 1045-1055, 2010.
    [6] D. D. Radford, N. A. Fleck, and V. S. Deshpande, "The response of clamped sandwich beams subjected to shock loading," International Journal of Impact Engineering, vol. 32, pp. 968-987, 2006.
    [7] K. P. Dharmasena, H. N. G. Wadley, Z. Xue, and J. W. Hutchinson, "Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading," International Journal of Impact Engineering, vol. 35, pp. 1063-1074, 2008.
    [8] D. D. Radford, G. J. McShane, V. S. Deshpande, and N. A. Fleck, "The response of clamped sandwich plates with metallic foam cores to simulated blast loading," International Journal of Solids and Structures, vol. 43, pp. 2243-2259, 2006.
    [9] N. A. Fleck and V. S. Deshpande, "The resistance of clamped sandwich beams to shock loading," Journal of Applied Mechanics, vol. 71, p. 386, 2004.
    [10] X. Qiu, V. S. Deshpande, and N. A. Fleck, "Dynamic response of a clamped circular sandwich plate subject to shock loading," Journal of Applied Mechanics, vol. 71, pp. 637-645, 2004.
    [11] Z. Xue and J. W. Hutchinson, "Preliminary assessment of sandwich plates subject to blast loads," International Journal of Mechanical Sciences, vol. 45, pp. 687-705, 2003.
    [12] Z. Xue and J. W. Hutchinson, "A comparative study of impulse-resistant metal sandwich plates," International Journal of Impact Engineering, vol. 30, pp. 1283-1305, 2004.
    [13] D. D. Radford, V. S. Deshpande, and N. A. Fleck, "The use of metal foam projectiles to simulate shock loading on a structure," International Journal of Impact Engineering, vol. 31, pp. 1152-1171, 2005.
    [14] F. Zhu, L. Zhao, G. Lu, and Z. Wang, "Deformation and failure of blast-loaded metallic sandwich panels—Experimental investigations," International Journal of Impact Engineering, vol. 35, pp. 937-951, 2008.
    [15] O. H. J. Menkes S.M., "Tearing and shear failures in explosively loaded clamped beams.," Exp. Mech., vol. 13, pp. 480-486, 1973.
    [16] C. A. Steeves and N. A. Fleck, "Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design," International Journal of Mechanical Sciences, vol. 46, pp. 561-583, 2004.
    [17] G. W. Ma, H. J. Shi, and D. W. Shu, "P–I diagram method for combined failure modes of rigid-plastic beams," International Journal of Impact Engineering, vol. 34, pp. 1081-1094, 2007.
    [18] T. Krauthammer, S. Astarlioglu, J. Blasko, T. B. Soh, and P. H. Ng, "Pressure–impulse diagrams for the behavior assessment of structural components," International Journal of Impact Engineering, vol. 35, pp. 771-783, 2008.
    [19] Y. Shi, H. Hao, and Z.-X. Li, "Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads," International Journal of Impact Engineering, vol. 35, pp. 1213-1227, 2008.
    [20] G. L. Rogers, Dynamics of Framed Structures. New York: John Wiley & Sons, Inc., 1959.
    [21] ABAQUS, "Acoustic and shock loads," in Abaqus Analysis User's Manual, Version 6.13, ed: ABAQUS , 2013.
    [22] 楊書豪, "鋁合金三明治蜂窩結構之衝擊動態響應分析," 碩士, 土木工程學系碩博士班, 國立成功大學, 2012.
    [23] J. Kee Paik, A. K. Thayamballi, and G. Sung Kim, "The strength characteristics of aluminum honeycomb sandwich panels," Thin-Walled Structures, vol. 35, pp. 205-231, 1999.
    [24] 王洪欣, "爆炸荷載作用下夾芯板的動力響應研究," 工業建築, vol. 41, pp. 23-28, 2011.
    [25] H. C. HexWeb®, "Honeycomb absorption system design data," 2005.
    [26] ABAQUS, "Progressive damage and failure," in Abaqus Analysis User's Manual, Version 6.13, ed: ABAQUS, 2013.
    [27] H. Hooputra, H. Gese, H. Dell, and H. Werner, "A comprehensive failure model for crashworthiness simulation of aluminium extrusions," International Journal of Crashworthiness, vol. 9, pp. 449-463, 2004.
    [28] S. P. Keeler, and W. A. Backofen, "Plastic Instability and Fracture in Sheets Stretched over Rigid Punches," ASM Transactions Quarterly, vol. 56, pp. 25-48, 1964.
    [29] W. Müschenborn, and H. Sonne, "Influence of the Strain Path on the Forming Limits of Sheet Metal," Archiv fur das Eisenhüttenwesen, vol. 46, pp. 597-602, 1975.
    [30] B. P. Russell, T. Liu, N. A. Fleck, and V. S. Deshpande, "The soft impact of composite sandwich beams with a square-honeycomb core," International Journal of Impact Engineering, vol. 48, pp. 65-81, 2012.
    [31] ABAQUS, "Cohesive elements," in Abaqus Analysis User's Manual, Version 6.13, ed: ABAQUS, 2013.
    [32] F. Zhu, L. Zhao, G. Lu, and E. Gad, "A numerical simulation of the blast impact of square metallic sandwich panels," International Journal of Impact Engineering, vol. 36, pp. 687-699, 2009.
    [33] M. G. C. a. S. P.D., Blast Effects on Buildings: Thomas Telford, 1995.
    [34] H. J. G. Smith P.D., Blast and ballistic loading of structures: Butterworth-Heinemabb, 1994.
    [35] C. P. Baker WE, Westine PS, Kulesz JJ, Strehlow RA., Explosion hazards and evaluation.: Amsterdam, New York: Elsevier Scientific Pub. Co., 1983.
    [36] S. D. Oswald C.J., FACEDAP theory manual Version 1.2. Omaha.Nebraska: US Army Corps of Engineers Omaha District, 1994.
    [37] K. T. Soh TB, "Load impulse diagrams of reinforcedconcrete beams subjected to concentrated transient loading," University Park, PA: Protective Technology Center, The Pennsylvania State University2004.
    [38] K. T. Ng P.H., "Pressure–impulse diagrams for reinforced concrete slabs.," University Park, PA: Protective Technology Center, The Pennsylvania State University2004.
    [39] ABAQUS, "Importing and transferring results," in Abaqus Analysis User's Manual, Version 6.13, ed: ABAQUS, 2013.

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE