簡易檢索 / 詳目顯示

研究生: 楊智喬
Yang, George
論文名稱: 三五族太陽能電池製作與分析
Fabrications and Characteristics of Group III/V Solar Cells
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 氮化鎵氮化鎵銦多重量子井線性梯度磷化鋁鎵銦太陽能電池
外文關鍵詞: linearly-graded, AlGaInP, multiple quantum well, InGaN, solar cell, heterostructure, GaN
相關次數: 點閱:76下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對三五族化合物半導體太陽能電池元件作相關研究與製作,包括新穎材料氮化鎵銦/氮化鎵成長在藍寶石基板上的結構設計與其所面臨問題之探討,以及成長於砷化鎵基板上之磷化鋁鎵銦主動層不同吸收層厚度對光吸收的影響與比較。
      在多層串接太陽能電池的材料選擇上,較高能隙與更低能隙材料是必須的。我們尋求比磷化鎵銦更高能隙的磷化鋁鎵銦,利用金屬有機化學氣相沉積磊晶成長,針對磷化鋁鎵銦吸收層厚度對電池的光吸收特性,探討其對電池光電轉換效率特性的影響。在新穎材料氮化鎵銦/氮化鎵的結構設計上我們設計了幾種結構,可分為多重量子井結構與線性梯度等磊晶方法來設計主動層的組成。初期先研究結構設計的可行性,期望透過初步的量測資料作為未來磊晶技術的參考依據,期許最後全波段高效率太陽能電池的製作。

    This thesis aims at the research and fabrications of group III/V compound semiconductor solar cells including a variety of indium gallium nitride/gallium nitride (InGaN/GaN) heterostructures grown on sapphire (Al2O3) substrates and aluminum-gallium-indium phosphide (AlGaInP) heterostructures grown on positive-type gallium arsenide (GaAs) substrates. These III/V-based solar cells were designed with different thickness and/or indium contents to evaluate the effect of these changes on the improvement of device performances.
    It is both necessary to contain materials with higher and lower energy bandgap for tandem solar cells. For AlGaInP-based solar cells, we adopted AlGaInP with higher energy bandgap than gallium-indium phosphide (GaInP) to serve as the base layer. At the same time, the effect of base layer thickness on conversion efficiency was also studied.
    Typically, photovoltaic devices need thick absorption layer to gain higher efficiency. However, it is difficult to grow an III-N-based solar cell with thick InGaN absorption layer(s) because of the large lattice mismatch between GaN and InGaN. Therefore, in this study, the InGaN-based solar cells, InGaN/GaN multiple quantum well and linearly-graded InxGa1-xN single layer were used to serve as the active layers to avoid the problem of crack. This is a beginning to survey whether these structures and material systems are promising or not to fabricate the full spectra solar cells. Although the results are not outstanding, we hope these preliminary studies could offer some information for people engaged in the field.

    摘要 I Abstract II 致謝 III 表目錄 VIII 圖目錄 IX 第一章 序論 1 1.1 背景 1 1.2 研究目的與動機 4 參考資料 8 第二章 原理及量測方法 10 2.1 太陽能電池工作原理 10 2.1.1 p-n接面太陽能電池 10 2.1.2 太陽能電池電路模型 10 2.1.3 太陽能電池之電流電壓特性與轉換效率 12 2.2 太陽能電池效率量測方法 14 2.2.1 太陽光頻譜 14 2.2.1-1 空氣質量 14 2.2.1-2 太陽光頻譜照度 15 2.2.2 太陽能電池標準測試條件 15 2.2.3 太陽光模擬器 16 2.2.4 太陽能電池量測系統 16 2.3 多層串接電池設計原理 16 參考資料 23 第三章 實驗方法與製程步驟 24 3.1 氮化鎵銦/氮化鎵太陽能電池製作 24 3.1.1 氮化鎵銦/氮化鎵太陽能電池元件結構設計 24 3.1.1-1 線性梯度太陽能電池結構 24 3.1.1-2 藍光綠光多重量子井太陽能電池結構 25 3.1.1-3 典型藍光多重量子井太陽能電池結構 26 3.1.1-4 典型綠光多重量子井太陽能電池結構 26 3.1.2 試片清潔 26 3.1.3 製程步驟 27 3.1.3-1 平台蝕刻 27 3.1.3-2 透明導電層與內縮製程 28 3.1.3-3 n電極與p電極製作 29 3.1.3-4 鈍化層製作 29 3.2 磷化鋁鎵銦太陽能電池製作 30 3.2.1 元件結構設計 30 3.2.2 製程步驟 31 3.2.2-1 背部電極製作 31 3.2.2-2 上部電極製作 31 3.2.2-3 打線襯墊製作 32 3.2.2-4 鈍化層製作 32 3.2.2-5 元件切割與損傷處理 32 參考資料 37 第四章 實驗結果與分析討論 38 4.1 氮化鎵銦/氮化鎵太陽能電池實驗結果與分析討論 38 4.1.1 TLM量測與分析 38 4.1.2 漏電流比較 39 4.1.3 線性梯度太陽能電池結構之量測與分析 40 4.1.4 多重量子井太陽能電池結構之量測與分析 41 4.1.5 影響氮化鎵銦/氮化鎵太陽能電池效率之主要因素 43 4.2 磷化鋁鎵銦太陽能電池實驗結果與分析討論 45 4.2.1 TLM量測與分析 45 4.2.2 磷化鋁鎵銦太陽能電池光電轉換效率之量測 45 參考資料 58 第五章 結論與未來展望 59 5.1 結論 59 5.2 未來展望 60 附錄 A 傳輸線模型理論(Transmission line model, TLM) A 參考資料 C

    第一章 序論
    【1】Adams W.G. and Day R.E., The action of light on selenium, Proc.
    R. Soc. A 25 113–7, 1876
    【2】D.M. Chapin, C.S. Fuller and G.L. Pearson, A New Silicon p-n
    Junction Photocell for Converting Solar Radiation into Electrical
    Power, J.Appl.Phys., 25 676, 1954
    【3】L.L. Kazmerski, Photovoltaics R&D:At the Tipping Point, Presented at
    the 2004 DOE Solar Energy Technologies Program Review Meeting
    October 25-28, 2004, Denver, Colorado
    【4】H. Melchior, Demodulation and Photodetection Techniques, in F. T.
    Arecchi and E. O. Sschulz-Dubois, Eds., Laser Handbook, Vol. 1,
    North-Holland, Amsterdam, 1972
    【5】S.R. Kurtz, D.Myers, and J.M. Olson, 26th IEEE Photovoltaic
    Specialists Conference, 875, 1997
    【6】A. Marti and G..L. Araujo, Sol. Energy Mater. Sol. Cells 43, 203, 1996
    【7】G.. Létay and A.W. Bett, Proc. of 17th European Photovoltaic Solar
    Energy Conference, Munich, Germany, 178-181, 2001
    【8】G.. Létay, “www.ise.fhg.de/english/III_V_solarcells/english/pubdown/
    etaOpt/etaOpt.html” , 2001
    【9】V.M. Andreev, V.A. Grikhiles, V.D. Rumyanzev, Photoelectric
    conversion of sun concentrated radiation, Leningrad, Nauka, 1989
    【10】J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller,
    Hai Lu, and William J. Schaff , Phys. Rev. B 66, 201403, 2002
    【11】J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller,
    Hai Lu, and William J. Schaff, J. Appl. Phys., Vol. 94, No. 10, 15
    November 2003
    【12】S.X. Li, K.M. Yu, J. Wu, R.E. Jones, W. Walukiewicz, J.W. Ager III,
    W. Shan, E. E. Haller, Hai Lu, and William J. Schaff, Phys. Rev. B
    71, 161201(R), 2005
    【13】A. Balcioglu, R.K. Ahrenkiel, and D.J. Friedman, J. Appl. Phys., Vol.
    93, No. 6, 2003

    第二章 原理及量測方法
    【1】W. Schockley, “Electrons and Holes in Semiconductors”, Van Nostrand,
    Princeton, NJ, 1950
    【2】S.M. Sze, “Semiconductor Devices, Physics and Technology 2nd
    edition”, John Wiely & Sons, 2002
    【3】B Burnett, “The Basic Physics and Design of III-V Multijunction Solar
    Cells”, Technology of the national renewable energy laboratory, 2002
    【4】American Society for Testing and Materials (ASTM) Terrestrial
    Reference Spectra for Photovoltaic Performance Evaluation, Reference
    AM1.5 Spectra, June, 1999
    【5】American Society for Testing and Materials, ASTM E927, 1997 &
    International Electrotechnical Commission, IEC 60904-9, 2004
    【6】A. Devos, “Endoreversible Thermodynamics of Solar Energy
    Conversion”, Oxford Univ. Pr., 1992

    第三章 實驗方法與製程步驟
    【1】I-hsiu Ho and G. B. Stringfellow, Appl. Phys. Lett. Vol. 69, 2701, 1996
    【2】Jerry G. Fossum, Robert D. Nasby, and Shing Chong Pao, IEEE
    Transaction on electron devices, vol. ED-27, no. 4, April 1980
    【3】D.J. Friedman, S.R. Kurtz, A.E. Kibbler and J.M. Olson, Photovoltaic
    Specialists Conference, 1991., Conference Record of the Twenty
    Second IEEE

    第四章 實驗結果與分析討論
    【1】Dieter K. Schroder, Semiconductor Material and Device
    Characterization, 3rd edition, John Wiely & Sons, 2005
    【2】徐國偉,"氧化鋅鎵透明導電薄膜之光電特性與其在氮化鎵上歐姆
       接觸特性之研究",國立成功大學光電科學與工程研究所碩士論
    文,2006
    【3】J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu,
    W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the
    fundamental band gap of InN,” Appl. Phys Lett. 80, 3967-3969, 2002
    【4】J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller,
    Hai Lu, and William J. Schaff , Phys. Rev. B 66, 201403, 2002
    【5】J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller,
    Hai Lu, and William J. Schaff, J. Appl. Phys., Vol. 94, No. 10, 15
    November 2003
    【6】Nasser H. Karam, Richard R. King, et al, “Development and
    Characteristics of High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and
    Triple-Junction Solar Cells”, IEEE transactions on electron devices,
    vol. 46, no. 10, 1999

    附錄
    【1】Dieter K. Schroder, Semiconductor Material and Device
    Characterization, 3rd edition, John Wiely & Sons, 2005

    下載圖示 校內:2010-08-08公開
    校外:2010-08-08公開
    QR CODE