簡易檢索 / 詳目顯示

研究生: 黃禮伸
Huang, Lin-Shan
論文名稱: 平板對接銲之殘留應力分析與實測
Analysis and Measurement of the Residual Stress in the Plane Weldment
指導教授: 林忠宏
Lin, Chuang-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 造船及船舶機械工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 85
中文關鍵詞: 殘留應力巴里定律有限元素分析裂縫成長
外文關鍵詞: fatigue crack propagation, Residual stress, Paris’law, Finite element Analsys
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文是以有限元素法進行模擬整個銲接過程,從初始加熱到冷卻的程序,期望從模擬分析中,探討銲接後所產生的殘留應力,並且應用鑽孔法,實際地進行量測平板對接銲的殘留應力,驗證有限元素法模擬銲接所產生的殘留應力的可行性,再進一步分析殘留應力對疲勞裂縫成長速度的影響。

    研究進行的分為三個方向:

    (1)利用有限元素法進行2維平板對接銲的模擬,探討其殘留應力,並分析不同銲接方式(潛伏銲和電弧銲)、不同銲接條件(邊界拘束,銲速改變等)下,殘留應力有何不同。

    (2)使用鑽孔法實際量測潛伏銲和電弧銲銲接的試片之殘留應力。

    (3)使用潛伏銲的試片進行疲勞拉伸實驗,分析銲接後所產生的殘留應力對疲勞的裂縫成長速度的影響。

    Using finite element analysis to simulate all process of welding in the present paper studies the residual stress of welded steel plates.Actually measuring the residual stress of weld steel plates is by method of hole-drilling,and proves feasibility of finite element analysis.Further we research and analyze the influence of residual stress on the propagating of fatigue crack.

    Research divides into three directions :

    1.Using finite element analysis to simulate 2-D welded plate,and study the residual stress of welded plates.Further we research the residual stress on different welding way(Shield Metal Arc Welding and Submerged Arc Welding),different weldind condition(the constrained boundary and change of welding speed etc).

    2.Actually measuring the residual stress on the steel plates of Shield Metal Arc Welding and Submerged Arc Welding.

    3.Using the steel plates of Submerged Arc Welding studies fatingue- tension-life experiment and analyzes the influence of residual stress on the propagating of fatigue crack.

    目錄.....................................................................Ⅰ 圖目錄...................................................................Ⅲ 表目錄...................................................................Ⅵ 符號說明.................................................................Ⅶ 第一章 緒論.......................................................... 1 1.1 前言............................................................. 1 1.2 相關文獻探討..................................................... 2 1.2.1 有限元素法模擬銲接分析文獻回顧....................................2 1.2.2 鑽孔法量測殘留應力文獻回顧........................................3 1.2.3 破壞力學文獻回顧..................................................4 1.3 本文架構..........................................................5 第二章 理論介紹...........................................................6 2.1 有限元素法模擬銲接程序................................................6 2.1.1 熱傳模式分析........................................................6 2.1.2 應力模式分析........................................................8 2.2 鑽孔法量測殘留應力...................................................10 2.3 破壞力學理論介紹.....................................................18 2.3.1 應力強度因子.......................................................18 2.3.2 巴里定律...........................................................21 2.3.3 疲勞裂縫尖端理論...................................................22 第三章 FEM模擬分析.......................................................24 3.1 材料性質與尺寸.......................................................24 3.2 分析方法.............................................................25 3.3 電弧銲問題的說明.....................................................26 3.3.1 不同銲接條件下之殘留應力分析.......................................27 3.4 潛伏銲問題說明.......................................................28 第四章 實驗..............................................................31 4.1 實驗背景與實驗目的...................................................31 4.2 鑽孔法實驗...........................................................31 4.2.1 實驗設備簡介.......................................................31 4.2.2 應變值的量測.......................................................32 4.2.3 實驗試片與材料性質.................................................32 4.2.4 實驗步驟...........................................................33 4.3 疲勞拉伸壽命試驗.....................................................39 4.3.1 試片規格...........................................................39 4.3.2 疲勞實驗之設備與方法...............................................42 4.3.3 裂縫開口應力量測...................................................44 4.3.4 Beach Mark之導入...................................................46 第五章 綜合結果與討論....................................................47 5.1 FEM模擬結果與討論....................................................47 5.1.1 電弧銲模擬結果分析討論.............................................47 5.1.1.1 不同銲接條件下的分析結果與討論...................................48 5.1.2 潛伏銲模擬結果分析.................................................49 5.2 鑽孔法量測殘留應力的結果討論.........................................49 5.2.1 電弧銲的結果.......................................................49 5.2.2 潛伏銲的結果.......................................................50 5.3 疲勞壽命試驗結果分析與討論...........................................61 5.3.1 疲勞試驗結果之a-N曲線與da/dN-ΔK曲線...............................61 5.3.2開口荷重之量測結果..................................................69 5.3.3 da/dN- 圖..........................................................75 5.3.4 Beach Mark 之結果..................................................78 5.4 綜合討論.............................................................80 第六章 結論..............................................................81 參考文獻.................................................................82

    [1] V. J. Papazoglou, K. Masubuchi, ”Numerical Analysis of Thermal Stresses During Welding Including Phase Transfermation Effects,” Tran. ASME Journal of Pressure Vessel Technology, Vol.104, pp. 198-203(1982).
    [2] 周長彬,蔡丕樁等編著,銲接學,全華圖書,八十年二月。
    [3] 陳宏志編著,” 銲接結構強度學 ” ,復文圖書出版社。
    [4] U. Chandra,” Determination of Residual Stresses due to Girth-Butt Welds in Pipes”, Tran. ASME Journal of Pressure Vessel Technology, Vol.107,pp.178~184,(1985).
    [5] Chu, S.L.,Peukrt, H.,and Schnider, E., “Residual Stress in a Welded Steel Plate and Their Measurements Using Ultrasonic Techniques,”MRL bull.res.dev.,Vol.1,No.2,pp.45~50,(1987).
    [6] Pang, H.L.,and Pukas, S.R., “Residual Stress Measurements in a Crusi-firm Welded joint Using Hole Drilling and StrainGagues,”Strain,February,pp.7~14,(1989).
    [7] B. L. Josefson & C. T. Karlsson, ” Transformation Plasticity Efficts on Residual Stresses in a Butt-Welded Pipe”,Trans. ASME Journal of Pressure Vessel Technology, Vol.114,pp.376 (1992).
    [8] B. L. Josefson, ”Effict of Transformation Plasticity on Welding Residual-Stresses Fields in Thin-Walled Pipes and Thin Plates”,Material Science and Technology, Vol.1,pp,904(1985).
    [9] B. L. Josefson, R. I. Karlsson, ” Three-Dimensional Finite Element Analysis of Temperatures and Stresses in a Single-Pass Butt-Welded Pipe”, Trans. ASME Journal of Pressure Vessel Technology, V112,pp.76 (1990).
    [10] E. F. Rybicki , D. W. Schmueser , R. W. Stonesifer, J. J.Groom,” A Finite-Element Model for Residual Stresses and Deflections in Girth-Butt Welded Pipes”, Tran. ASME Journal of Pressure Vessel Technology, Vol.100(1978).
    [11] U. Chandra,” Determination of Residual Stresses due to Girth-Butt Welds in Pipes”, Tran. ASME Journal of Pressure Vessel Technology, Vol.107,pp.179(1985).
    [12] J. Randy Roper, John Vossler, Dave Osborn,” Thermal Stress and Strain Anlysis in Traveling Autogenous Welds”,Marc users’ Meeting in U.S.A.,pp.313-331(1992).
    [13] B. V. Kumar,O. N. Mohanty, A. Bisas,” Welding of Thin Steel Plates:A New Model for Thermal Analysis,” Journal of Material Sience, Vol. 27, pp.203-209 (1992).
    [14] Z-B. Kuang, S. N. Atluri,”Temperature Field due to a Moving Heat Source : A Moving Mesh Finite Element Analysis”, Tran. ASME Journal of Applied Mechanics, Vol.52 , pp.274 (1985).
    [15] T. Muraki,J. J.Bryan,K. Masubuchi,” Analsis of Thermal Stresses and Metal Movement During Welding,” Trans. ASME Journal of Engineering Materials and Technology, Vol.97 ,pp. 81-91 (1975)
    [16] Y. Fujita,T. Nomoto,” Studies of Thermal Stresses in Welding With Special Reference to Weld Cracking,” First International Symposium on Cracking and Fracture in Welds Tokyo, Nov, (1971).
    [17] D. M. Finch,F. M. Burdekin,” Effects of Welding Residual Stresses on Significance of Defects in Various Types of Welded Joint,” Engineering Fracture Mechanics, Vol.41 No.5,pp.721-735 (1992).
    [18] John H. Cowles,Jr., Anthony F. Giamei,” Finite Element Modeling of Gas Tungsten Arc Welding Using Automatic Rezoning Techniques,” MARC users’ Meeting in U.S.A. pp.335-347(1992).
    [19] Mathar,J.,” Determination of Initial Stresses by Measuring the Deformation Around Drilled Holes”,Trans.ASME,Vol.4,pp249-254,(1934).
    [20] Mesmer, G.A.,” Eisenhuttenwesen”, Vol.10,pp.59.(1936).
    [21] Soete,W. and Vancrombrugge,R.,” An Industrial Method for the Determination of Residual Stress”,Proc.SESA,Vol.1,pp.17-28,(1950).
    [22] Nawwar,A.M.,McLachlan,K. and Schewchuk,J.,”A Modified Hole Drilling Technique for Determining Stress in ThinPlates”,Proc
    .SESA,Vol.1,(1976).
    [23] Nishida, M.,” Metal Materials”, Vol.1,pp.15,(1964).
    [24] Ggriffith,A.A., “ The Phenomena of Rupture and Flow in Solid,”Phil. Tran.Roy.Soc. of Landon,A221(1921)pp.163-197.
    [25] Irwin,G.R., “Fracture Dynamics,”Fracturing of Metals,pp.147-166
    .ASM publ.(1948).
    [26] Orowan, E., “ Energy Criteria of Fracture,”Welding Journal,34(1995)pp. 157s-160s.
    [27] Paris P.C and Erdogan,F.”A Critical Analysis of Crack Propagation
    Law,”J.of Basic Engng.,Trans.ASME,D85,pp.528-534(1943)
    [28] Elber,Wolf,”The Significance of Fatigue Crack Close,”ASTM STP486,pp230-242,1971.
    [29] ”Theory, “ ANSYS USER’S Manual for Revision 5.0 Volume Ⅳ,1992
    [30] ASTM,” Standard Test Method for Determining Residual Stress by the Hole-Drilling Strain-Gage Method “, pp.715-720,1989.
    [31] 胡永祥,” 利用低速鑽孔法對304L不鏽鋼銲接件殘留應力之檢測評估 “,成功大學機械工程研究所,碩士論文,1993.
    [32] Timoshenko , S . P . and Goodier , J . N . ,” Theory of Elasticity “ , 3rd.Ed.McGraw-Hill Inc.,Taiwan,1986
    [33] Schajer, G.S,” Application of Finite Element Calculations to Residual Stress Measurements “ , Journal of Engineering Materials and Technology , Vol.103 , pp.157-163 , April , 1981 .
    [34] David Broek , “Elementary Engineering Fracture Mechanics” 4th revised edition .
    [35] G. R. Irwin, “Analysis of Stresses Near The End of a Crack Traversing a Plate”, Journal of Applied Mechanics , Trans. Of ASME , Vol.E24 , 1957 , pp.361-364
    [36]李宗憲,“應力集中係數對疲勞裂縫進展影響之研究”,國立成大造船所碩士論文,中華民國九十年六月。
    [37] Paris , P.C. , Gomez , M. P. and Anderson . W. E. ,A rational analytic theory of fatigue . The Trend in Engineering . 13 (1961) pp. 9-14.
    [38] P. C. Paris and F. Erdogan , “A Critical analysis of Crack Propagation Laws” , Trans. ASME. Res. D , pp.528 , 1963.
    [39] Elber , “Fatigue Crack closure under cyclic tension” , ASTM STP486 , American Socity for Testing and Material , hiladelphia , pp.230-241.
    [40] C. H. Lin , S. H. Her , H. K. Lin , “Stress Concentration Effect on the Growth Rate of Embedded Fatigue Crack of Welded Joints” , TEAM’98 Kanazaewa , Japan , 6-9 , July , (1998).

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE