| 研究生: |
李傑仁 Lee, Chieh-Jen |
|---|---|
| 論文名稱: |
具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用 Control of System with Asymmetric Hysteresis and its Application to Piezo Driven Stage Positioning Control |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 前饋控制 、壓電驅動平台 、磁滯現象 |
| 外文關鍵詞: | piezo driven stage, hysteresis, feedforward control |
| 相關次數: | 點閱:73 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文之主要目的在建立一精確的磁滯模型,據以設計控制器以期達到系統高精度定位之要求。在建立磁滯模型方面,本文採用切換系統的觀念來描述Preisach型磁滯,將建模的過程系統化,使參數的選取定性化與步驟化,並配合RIP圖形解釋磁滯行為之輸出與輸入間的關係,使磁滯模型更加完備。本研究以壓電驅動平台為對象,由數值模擬與實驗結果比對,顯示本文提出之建模方法能精確的描述非對稱型之磁滯現象。在控制架構方面,本文以前饋控制架構並配合PD型式之回饋控制器,實現高精度之定位控制。
The main purpose of this study is to perform the high precision positioning control task of a hysteresis system by means of an accurate hysteresis modeling. In the hysteresis modeling, a concept of switched system is adopted to describe the Preisach type hysteresis. The systematic modeling procedure is established to obtain the hysteresis system’s parameters step by step. Besides, the geometry of RIP is composed to explain the relationships between the input and the output of a hysteresis system. This is a good compensated procedure for hysteresis modeling. In this study, a piezo driven stage is used to verify the modeling accuracy. Comparing the simulation and the experimental results, it shows the proposed model in this study has a great ability of describing the asymmetric hysteresis phenomena. A control structure includes a feedforward controller and a PD type feedback controller used to realize the high precision positioning control.
[1].Adriaens, H. J. M. T. A., de Koning, W. L. & Banning, R.(1997). Design and Modeling of a Piezo-Actuated Positioning Mechanism. Proceedings of IEEE Conference on Decision and Control, pp.1978-1983.
[2].Wen, Y. K. (1976). Method of Random Vibration of Hysteretic Systems. Journal of Engeneering Mechanics, pp.249-263.
[3].Spencer, B.F. (1986). Reliability of Randomly Excited Hysteretic Structures. New York: Springer-Verlag.
[4].Adriaens, H. J. M. T. A., de Koning, W. L. & Banning, R.(2000).
Modeling Piezoelectric Actuators. IEEE/ASME on Mechatronics , 5(4),
331-341.
[5].Alud, A. (1973). Acoustic Field and Waves in Solids. New York: Wiley. vol.1 ,(pp. 265-280).
[6].Banning, R., de Koning, W. L. & Adriaens, H. J. M. T. A. (2001).
State-Space Analysis and Identification for a Class of Hysteretic Systems. Automatica 37, 1883-1892.
[7].Ben, R., & H. Hu. (2001). Dynamic Modeling of Hysteresis in Piezoceramics. IEEE/ASME International Conference Advanced Intelligent Mechatronics Proceedings , (pp. 510-515).
[8].Coleman, B. D., & Hoggdon, M. L. (1986). A constitute relation for
rate-independent hysteresis in ferromagnetically soft materials. International Journal of Engeneering Science, 24(6), 897-919.
[9].Croft, D., & Devasia, S. (1998). Hysteresis and Vibration Compensation for Piezoactuators. Journal of Guidance, Control and Dynamics, 710-717.
[10].Croft, D., Shedd, G., & Devasia, S. (2000). Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application. Proceedings of the American Control Conference, 2123-2128.
[11].Ge , P., & Jouaneh, M. (1995). Modeling Hysteresis in Piezoelectric Actuators. Precision Engineering, (pp. 211-221).
[12].Ge , P., & Jouaneh, M. (1996). Tracking Control of a Piezoelectric Actuator. IEEE Transactions on Control Systems Technology, vol.4, (pp. 209-216).
[13].Goldfarb, M., & Celanovic, N. (1997). Modeling Piezoelectric Stack Actuators for Control of Micromanipulation. IEEE Transactions on Control Systems Technology,17(3), 69-79.
[14].Hwang, C. L., Jan, C. & Chen, Y. H. (2001).Piezomechanics Using Intelligent Variable-Structure Control. IEEE Transactions on Industrial Electronics ,48(1), 47-59.
[15].Jordi, O., & Lucas, D. (2002). Hysteresis in Shape-Memory Alloys. International Journal of Non-Linear Mechanics, 1275-1281.
[16].Jyh-Da, Wei., & Chuen-Tsai, Sun. (2002). Simulation of Hysteresis Systems Using a Piecewise Polynomial Function. IEEE Signal Processing Letters, (pp. 207-210).
[17].Jyh-Da, Wei., & Chuen-Tsai, Sun. (2000). Constructing Hysteretic Memory in Neural Networks. IEEE Transactions on Systems, Man and Cybernetics, (pp. 601-609).
[18].Low,T. S., & Guo, W. (1995). Modeling of a Three-Layer Piezoelectric Bimorph Beam with Hysteresis. Journal of Microelectromechanical Systems, 4(4), 230-237.
[19].Mayergoyz, I. (1991). Mathematical Models of Hysteresis, New York: Springer-Verlag.
[20].Pan, J., & Su, C. Y. (2001). Chatter Suppression with Adaptive
Control in Turning Metal via Application of Piezoactuator. Proceedings of IEEE Conference on Decision and Control , 2436-2441.
[21].Sun, X., & Chang, T. (2001).Control of Hysteresis in a Monolithic
Nanoactuator. Proceedings of the American Control Conference,
pp.2261-2266.
[22].林挺勇,民90,補償靜摩擦潛變效應之快速精度極限定位,博士論文,國立成功大學航太工程研究所。
[23].陳俊生,民89,發展以史密斯預測器為基礎之強健性 控制器及其應用於壓電致動器磁滯補償之研究,碩士論文,國立中正大學機械工程研究所。
[24].魏志達,民91,遲滯現象之系統建模,博士論文,國立交通大學資訊科學研究所。