| 研究生: |
徐碩 Hsu, Shuo |
|---|---|
| 論文名稱: |
四軸飛行器葉片之田口方法最佳化設計 Optimal Design of Quadcopter Airfoil by Utilizing Taguchi Method |
| 指導教授: |
黃才烱
Huang, Tsai-Jeon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 四軸飛行器 、螺旋槳翼型設計 、最佳化 、飛行效率 |
| 外文關鍵詞: | Quadcopter, Propeller Airfoil Design, Optimization, Flight Efficiency |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
四軸飛行器乃為近年蓬勃發展的一項熱門科技,除了最為人所熟知的高空攝影外,在高空巡檢、救災救難和軍事偵察上也頗具有發展潛力。其輕巧、高機動性和高性價比 的 特性更是成為各研究單 位及模型玩家的新玩物。
但在如此備受關注的同時,卻也隱藏著載重能力不足以及續航力較短等問題。若能針對這些問題進行改善 ,想必四軸飛行器便能在各領域中遍地開花,使其能夠得到更充分的利用,讓未來人們的生活品質得到更進一步的改善。
本研究以分度板與滑槽等特徵設計出一套葉片升力 量測機構,並藉由更換葉片測試樣本及其俯仰角分別進行效率及載重測試。葉片測試樣本的部分將針對 NACA四位數翼型的三項重要參數進行分析。上述的三項參數包含第一碼所代表的最大彎度值、第二碼所代表的最大彎度所在位置以及第三四碼所代表的最大厚度。效率測試主 要將量測各葉片樣本在固定升力下之電功率倒數 。載重測試則是作為效率測試之驗證實驗並量測出更多面向的數據,主要將量測等電功率供應下各葉片測試樣本之升力。最後將透過田口方法對其進行分析,找到各項重要參數的最佳解,進而求得最佳化之葉片樣本號數及其最佳俯仰角。 另外,本研究亦針對本次之分析結果建立一套整合設計之GUI應用程式以協助未來的四軸飛行器開發人員進行更快速、更精準的改良。
本研究以實驗分析方法在 NACA翼形中取得最佳 的效率參數,並建立一套 整合設計程式系統,可提供未來設計人員進行螺旋槳開發 ,進而得到提升整體研發量能之效果 。
Quadcopter is a popular technology that has developed vigorously in recent years. In addition to the most well-known of high-altitude photography, it also has great potential for development in high-altitude inspection, disaster relief and military reconnaissance. Its light weight, high mobility and high cost performance ratio have become a new plaything among research centers and players. But at the same time of so much attention, there are also several problems such as insufficient load capacity and short endurance. If these problems can be optimized, quadcopters will be able to apply everywhere in various fields, so that they can be more fully utilized, and the quality of life of people will be further improved in the future.
In this study, a set of measurement mechanism is designed with features including degree board and chute. Efficiency and load experiments are carried out by replacing the Blade Samples and its pitch angle respectively. There are three important parameters of the NACA 4-digit airfoils, then Blade Samples will be analyzed by following these parameters. These three parameters include the maximum camber value represented by the first number, the position of the maximum camber represented by the second number, and the maximum thickness represented by the third and fourth numbers. The efficiency experiment mainly measures the electric power of each Blade Sample under fixed lift. The load experiment is used as a verification of the efficiency experiment and measures more oriented data. It mainly measures the lift force of each Blade Sample under equal electric power. Finally, it will be analyzed by Taguchi method to find the optimal solution of various important parameters, and then the optimized Blade Sample number and optimal pitch angle will be obtained. In addition, this study also established a set of integrated GUI applications based on the optimized results of this analysis to assist future quadcopter developers to make faster and more accurate improvements.
This research uses experimental analysis methods to obtain the best efficiency parameters in the NACA airfoils, and establishes an integrated application, which can provide future designers to develop optimized propeller, thereby improving the overall efficiency of development.
Abbott, I. H. Stivers, L. S. and Albert, E. D. (1945) "Summary of airfoil data. " National Advisory Committee for Aeronautics.
Airfoil Tools. (2022) "Airfoil Database (NACA 4 Digit) "from http://airfoiltools.金om/search/index?m%5Bgrp%5D=naca4d&m
Anderson, J. D. (2016) Fundamentals of Aerodynamics.(6th Ed.). USA : McGraw-Hill.
Bouadi, H. , Cunha, S. S. , Drouin, A. and Camino, F. M. (2011) "Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking." IEEE 12th International Symposium on Computational Intelligence and Informatics.
Brandt, J. B. and Selig, M. S. (2011) "Propeller Performance Data at Low Reynolds Numbers." 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
Cutler, M., Ure, N. K. , Michini, B. and How, J. P. (2011) "Comparison of Fixed and Variable Pitch Actuators for Agile Quadrotors. " AIAA Guidance, Navigation, and Control Conference.
Dikmen, I. C. , Arisoy, A. and Temeltas, H. (2009), "Attitude control of a quadrotor. " 4th International Conference on Recent Advances in Space Technologies.
Driessens, S. and Pounds, P. E. I. (2013)"Towards a more efficient quadrotor configuration. " IEEE/RSJ International Conference on Intelligent Robots and Systems.
Guenard, N. , Hamel, T. and Eck, L. (2006) "Control Laws For The Tele Operation Of An Unmanned Aerial Vehicle Known As An X4-flyer. " IEEE/RSJ International Conference on Intelligent Robots and Systems.
Gupte, S. , Mohandas, P. I. T. and Conrad, J. M. (2012) "A survey of quadrotor Unmanned Aerial Vehicles. " Proceedings of IEEE Southeastcon.
Jin, J. H. (2021). " Tests of Characteristics of Wind Sensors for Multicopter Drone Uses" Journal of Aerospace System Engineering Vol.15, No.3, pp.99-104.
McLemore, H. C. and Cannon, M. D. (1954) "Aerodynamic Investigation of a Four-Blade Propeller Operating Through an Angle-of-Attack Range from 0o to 180o." National Advisory Committee for Aeronautics.
Merchant, M. P. Miller, L. S. (2006) "Propeller Performance Measurement for Low Reynolds Number UAV Applications." 44th AIAA Aerospace Sciences Meeting and Exhibit.
Nelson, W. C. (1944) Airplane Propeller Principles. USA : John Wiley & Sons.
Ghazbi, S. N. , Aghli, Y. , Alimohammadi, M. and Akbari, A. A. (2016) "Quadrotors Unmanned Aerial Vehicles: a Review." International Journal on Smart Sensing & Intelligent Systems, vol. 9, pp. 309-333.
Nguyen, D. Q. , Loianno, G. and Ho, V. A. (2020) " Towards Design of a Deformable Propeller for Drone Safety." 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 464-339.
Podsedkowski, M. , Konopinski, R. and Lipian, M. (2022) " Sound noise properties of variable pitch propellerfor small UAV." 2022 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1025-1029.
Pounds, P. , Mahony, R. , Gresham, J. , Corke, P. and Roberts, J. (2004) "Towards dynamically-favourable quad-rotor aerial robots." Proceedings of the 2004 Australasian Conference on Robotics & Automation.
Prouty, R.W. (2002) Helicopter Performance, Stability, and Control. USA : Krieger Publishing Company
Rogers, D. F. (2010) "Propeller Efficiency Rule of Thumb. " from https://
docplayer.net/20899709-Propeller-efficiency-rule-of-thumb-david-f-rogers-phd-atp.html
Taylor, J. R. (1997) "Introduction to Error Analysis, The Study of Uncertainties in Physical Measurements." University Science Books, California.
Theys, B. , Dimitriadis G. , Hendrick P. and Schutter, J. D. (2016) "Influence of propeller configuration on propulsion system efficiency of multi-rotor Unmanned Aerial Vehicles." International Conference on Unmanned Aircraft Systems. Microchip Technology Inc.
李輝煌,田口方法—品質設計的原理與實務(三版),新北市:高立圖書,2011。
瑞吉斯,飛機升力不只白努利。科學人雜誌,2020年8月號。
廖信德,田口方法在逆向工程之CAD模型重建及製造最佳化參數設計,
明新科技大學校內專題研究計畫成果報告,新竹縣,2008。
楊榮峯,四旋翼機之姿態控制,國立成功大學航太工程研究所碩士論文,台南市,2010。
張崇豪,應用田口方法於撲翼機之設計,國立成功大學航太工程研究所碩士論文,台南市,2010。
賴舜平,應用測試方式設計葉片改善四軸飛行器效率,國立成功大學機械工程研究所碩士論文,台南市,2016。
廖大為,四軸飛行器葉片最佳化平台設計,國立成功大學機械工程研究所碩士論文,台南市,2018。
曾東立,四軸飛行器葉片機構俯仰角控制機構實體設計,國立成功大學機械工程研究所碩士論文,台南,2019。