簡易檢索 / 詳目顯示

研究生: 郭仲軒
Kuo, Chung-Hsuan
論文名稱: 能階量子化的複數軌跡詮釋
Complex Trajectory Interpretation of Energy Quantization
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 101
中文關鍵詞: 複數力學複數軌跡量子分岔能量連續性能階量子化
外文關鍵詞: complex mechanics, complex trajectory, quantum bifurcation, energy continuity, energy quantization
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一個量子系統中,呈現如階梯般跳躍的能階,一直是物理學的一個巨大謎團。傳統量子力學採用機率詮釋,在剔除那些不滿足機率條件的波函數(又稱平方不可積分波函數)的過程中,得到不連續性的能量變化。然而,當我們使用了不完整的波函數,自然會得到不連續的能量。因此,吾人認為能階的量子化事實上是機率詮釋下不完整的產物。為了還原能階斷層之間的連續性變化,吾人引入複數力學的軌跡詮釋,將完整波函數所對應到的複數軌跡,沿著軌跡作圍線積分,即可還原完整波函數對能量連續性的貢獻。
    在第一個範例中,吾人針對一個無限方井中的自由粒子進行分析。在過去,無論是傳統量子力學的機率詮釋或是波姆的實數軌跡詮釋,對井中粒子的動態皆無法給予具體的描述。在複數力學的架構之下,吾人發現井中的粒子會出現兩種複數軌跡:滿足駐波條件的波函數所對應到的封閉型軌跡以及不滿足駐波條件的波函數所對應到的非封閉型軌跡;前者的平均能量即為傳統量子力學中的特徵能量,後者的平均能量即形成了串連這些離散能階之間的連續性變化曲線。
    在第二個範例中,吾人示範了簡諧振子的能階量子化,事實上來自封閉的複數軌跡所包圍的鞍點與平衡點數目的「分裂」現象。然而,若是沿著軌跡作積分,並加入量子位勢能的修正,我們一樣可以得到 E = R+1/2 的連續性能量變化,這當中也包含了傳統量子力學所允許的特徵能量 E = N+1/2 。此外,吾人也從完整的波函數,得到了在機率詮釋中認為薛丁格方程式所無法呈現的自旋與反自旋動態。種種的證據足以讓人信服,相較於量子機率詮釋所提供的不完整資訊,複數軌跡詮釋更加適合用來描述一個量子系統。
    傳統的量子力學建立於「測量」得到的特徵值來描述一個量子系統。當我們對一個微觀尺度下的系統進行測量,同時系統也將塌縮至特定的特徵態,使得我們總是無法得到粒子精確的位置及完整的能量變化。哥本哈根學派將這樣的不確定性一概用機率解釋。然而,近年來的弱測量技術,已經陸續出現了機率無法詮釋的奇特現象。巧合的是,這些奇特現象與本論文利用複數軌跡得到的結果有著高程度的相似性。這些跡象彷彿皆暗示著複數的軌跡動態才是真正隱藏在量子力學機率詮釋背後的真正作用機制。

    In a quantum system, the energy levels that jump like a ladder have always been a huge mystery of physics. Traditional quantum mechanics uses the probability interpretation to obtain the discontinuous changes of energy in the process of eliminating those wave functions that do not meet the probability conditions (also known as non-square integrable wave functions). However, when we only allow the existence of discontinuous wave functions, we will naturally get discontinuous energy. Therefore, we believe that the quantization of energy levels is actually an incomplete product under the probability interpretation. In order to restore the continuity between energy levels, we introduce the complex trajectory interpretation of quantum mechanics to reveal what is missing between discrete energy levels.
    In the first example, we analyze a free particle moving in an infinite well. In the past, neither the probabilistic interpretation of quantum mechanics nor the Bohm’s real trajectory interpretation could give a complete description of the particle’s dynamics in a well. Under the framework of complex mechanics, we find that the complex trajectories of particle in the well have two patterns: the closed trajectory corresponding to the wave function that meets the standing-wave condition and the non-closed trajectory corresponding to the wave function that does not meet the standing wave condition. The average energy of the former is just the discrete energy in quantum mechanics, and the average energy of the latter forms a continuous curve connecting the discrete energy levels.
    In the second example, we demonstrate the energy quantization of the simple harmonic oscillator in terms of the bifurcation phenomenon of the number of saddle points and equilibrium points surrounded by closed complex trajectories. If we integrate along the complex trajectory and add the quantum potential energy correction, we can obtain the continuous energy change of E = R+1/2, which also includes the eigen energy E = N+1/2 allowed by traditional quantum mechanics. In addition, from the complete wave functions including square-integrable and non-square-integrable wave functions, we obtain the spin and anti-spin dynamics that otherwise cannot be described by Schrödinger equation in the probability interpretation. It is evident that compared with the incomplete information provided by the probability interpretation of quantum mechanics, the complex trajectory interpretation is more suitable for describing a quantum system.
    Traditional quantum mechanics is based on the eigenvalues obtained by measurement to describe a quantum system. When we measure a quantum system, the system will collapse to a specific eigen state, making it impossible for us to obtain the precise position of the particles and to know the transition in the collapsing process. The Copenhagen School took the probability theory to interpret such uncertainty. However, in recent years, the weak measurement technology has discovered strange phenomena that cannot be explained by the probability interpretation. Coincidentally, these peculiar phenomena are quite similar to the results obtained in this dissertation by using complex trajectories. These signs seem to imply that the dynamics of complex trajectories are the mechanism hidden behind the probability interpretation of quantum mechanics.

    摘要 i ABSTRACT iii CHINESE ABSTRACT OF EACH CHAPTER I 致謝 VIII LIST OF FIGURES XI NOMENCLATURE XVI CHAPTER I 1 1.1 Background reviews 1 1.2 Motivations 7 1.3 Contributions 8 1.4 Organization 11 CHAPTER Ⅱ 17 2.1 Probability Interpretation and Square-Integrable Condition 17 2.2 Energy Quantization in Quantum Mechanics 19 2.3 Energy Quantization in an Infinite Well 21 2.4 Energy Quantization of Harmonic Oscillator 25 CHAPTER Ⅲ 28 3.1 Real-Trajectory Interpretation Based on Bohmian Mechanics 28 3.2 Complex-Trajectory Interpretation Based on Complex Mechanics 31 3.3 Time-Averaged energy along complex trajectories 33 3.4 Contour Integral and Quantization 35 3.5 The Reflection Law on the Complex Plane 36 CHAPTER Ⅳ 43 4.1 Complex trajectories in an infinite well 43 4.2 Energy Quantization in an Infinite Well 54 4.3 Quantum Bifurcation in an Infinite Well 66 CHAPTER Ⅴ 70 5.1 Complex Trajectory of Quantum Harmonic Oscillator 70 5.2 Energy Quantization of a Harmonic Oscillator 77 5.3 Quantum Bifurcation of a Harmonic Oscillator 79 5.4 The Freedom of Spin of Quantum Harmonic Oscillator 82 CHAPTER Ⅵ 87 6.1 Conclusions and Discussions 87 6.2 Future Works 89 REFERENCES 93

    [1] Schrödinger, E., Collected Papers on Wave Mechanics, New York: Chelsea Publishing Company (1978).
    [2] Schiff, L. I., Quantum Mechanics, 3rd edition. McGraw-Hill, Singapore (1968).
    [3] Pauling, L., Wilson. E.B., Introduction to Quantum Mechanics with Applications to Chemistry, Dover, New York (1985).
    [4] Ballentine, L. E., Quantum Mechanics: A Modern Development, World Scientific, Singapore (1998).
    [5] Born, M., “Statistical Interpretation of Quantum Mechanics”, Science, New Series, Vol. 122, No. 3172, pp. 675-679 (1955).
    [6] Born, M., “Zur Quantenmechanik der Stoßvorgänge”, Z. Phys. 37, pp. 863–867 (1926).
    [7] Born, M., “Zur Quantenmechanik der Stoßvorgänge”, Z. Phys. 38, pp. 803–840 (1926).
    [8] Born, M., “Physical aspects of quantum mechanics”, Nature 119, pp. 354–357 (1927).
    [9] Born, M., “Quantenmechanik und Statistik. Naturwissenschaften”, 15, pp. 238–242 (1927).
    [10] Ballentine, L. E., “The statistical interpretation of quantum mechanics”, Rev. Mod. Phys. 42, pp. 358–381 (1970).
    [11] Dirac, P. A. M., The principles of quantum mechanics, 3rd edition, Oxford, London (1947).
    [12] von Neumann, J., Mathematical foundations of quantum mechanics, Princeton University Press, Princeton (1955).
    [13] Weyl, H., The theory of groups and quantum mechanics, Dover, New York (1931).
    [14] Ali, S. T., Engliš, M., “Quantization methods: a guide for physicists and analysis”, Rev. Math. Phys, 17, pp. 391-490 (2005).
    [15] Styer, D. F., Balkin, M. S., Becker, K. M., Burns, M. R., Dudley, C. E., et al, “Nine formulations of quantum mechanics”, Am. J. Phys., 70 , pp. 288 (2002).
    [16] Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables”, I, Physical review, Vol. 85, 2 (1952).
    [17] Bohm, D., “A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables”, II, Physical review, Vol. 85, 2 (1952).
    [18] Makri, N., “Feynman path integration in quantum dynamics”, Comput. Phys. Commun. 63, pp. 389-414 (1991).
    [19] Feynman, R. P., Hibbs, A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, (1965).
    [20] Madelung, E., “Quantentheorie in hydrodynamischer form”, Z. Phys. 40, pp. 322–326 (1926).
    [21] Kendrick, B. K.: Quantum hydrodynamics: Application to N-dimensional reactive scattering. J. Chem. Phys. 121, 2471–2482 (2004)
    [22] McCullough, E. A., Wyatt, R. E., “Quantum dynamics of the collinear (H,H2) reaction”, J. Chem. Phys. 51, pp. 1253–1254 (1969).
    [23] McCullough, E. A., Wyatt, R .E. “Dynamics of the collinear H + H2 reaction. I. Probability density and flux”, J. Chem. Phys. 54, pp. 3578–3591 (1971).
    [24] McCullough, E. A., Wyatt, R. E., “Dynamics of the collinear H+H2 reaction II Energy analysis”, J. Chem. Phys. 54, pp. 3592–3600 (1971).
    [25] Tarozzi, G., van der Merwe, Open Questions in Quantum Physics, A. edition., Reidel, Dordrecht (1985).
    [26] Passon, O., “On a Common Misconception Regarding the de Broglie–Bohm Theory”, Entropy, 20, pp. 440 (2018).
    [27] Myrvold, W. C. “On some early objections to Bohm’s theory”, Int. Stud. Phil. Sci.,17, pp. 7-24 (2003).
    [28] Takabayasi, T. “On the formulation of quantum mechanics associated with classical pictures”, Prog. Theor. Phys. 8, pp. 143-182 (1952).
    [29] Pauli, W., De Broglie Louis, physicien et penseur, Albin Michel edition, Paris (1953).
    [30] Keller, J. B., “Bohm's Interpretation of the Quantum Theory in Terms of Hidden Variables”, Phys. Rev. 89, pp. 1040 (1953).
    [31] Holland, P. R. The Quantum Theory of Motion, Cambridge University Press, Cambridge (1993).
    [32] Wyatt, R. E., Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Springer, New York (2005).
    [33] Weiner, J. H., Askar, A. “Particle method for the numerical solution of the time-dependent Schrödinger equation”, J. Chem. Phys. 54, pp. 3534–3541 (1971).
    [34] Dey, B. K., Askar, A., Rabitz, H., “Multidimensional wave packet dynamics with the fluid dynamical formulation of the Schrödinger equation, J. Chem. Phys. 109, pp. 8770–8782 (1998).
    [35] Sales Mayor, F., Askar, A., Rabitz, H.A. “Quantum fluid dynamics in the Lagrangian representation and applications to photo dissociation problems”, J. Chem. Phys. 111, pp. 2423-2435 (1999).
    [36] Wyatt, R. E. “Quantum wave packet dynamics with trajectories: application to reactive scattering”, J. Chem. Phys. 111, pp. 4406-4413 (1999).
    [37] Wyatt, R. E., “Quantum wave packet dynamics with trajectories: wavefunction synthesis along quantum paths”, Chem. Phys. Lett. 313, pp. 189-197 (1999).
    [38] Lopreore, C., Wyatt, R. E., “Quantum wave packet dynamics with trajectories”, Phys. Rev. Lett. 82, pp. 5190-5193 (1999).
    [39] Sanz, A. S., Borondo, F., Miret-Artés, S., “Causal trajectories description of atom diffraction by surfaces”, Phys. Rev. B 61, pp. 7743-7751 (2000).
    [40] Sanz, A. S., Borondo, F., Miret-Artés, S. “On the classical limit in atom-surface diffraction”, Europhys. Lett. 55, pp. 303-309 (2001).
    [41] Garashchuk, S., Rassolov, V. A., “Semiclassical dynamics with quantum trajectories: formulation and comparison with the semiclassical initial value representation propagator”, J. Chem. Phys. 118, pp. 2482-2490 (2003).
    [42] Floyd, E. R., “Bohr-Sommerfeld quantization with the effective action variable”, Phys. Rev. D 25, pp. 1547-1551 (1982).
    [43] Floyd, E. R., “Modified potential and Bohm’s quantum-mechanical potential”, Phys. Rev. D 26, pp. 1339-1347 (1982).
    [44] Floyd, E. R., “Arbitrary initial conditions of nonlocal hidden-variables”, Phys. Rev. D 29, pp. 1842-1844 (1984).
    [45] Floyd, E. R., “Closed-form solutions for the modified potential”, Phys. Rev. D 34, pp. 3246-3249 (1986).
    [46] Floyd, E. R., “Where and why the generalized Hamilton–Jacobi representation describes microstates of the Schrödinger wave function”, Found. Phys. Lett. 9, pp. 489-497 (1996).
    [47] Floyd, E. R., “Reflection time and the Goos-Hänchen effect for reflection by a semi-infinite rectangular barrier”, Found. Phys. Lett. 13, pp. 235-251 (2000).
    [48] Floyd, E. R., “Interference, reduced action, and trajectories”, Found. Phys. 37, pp. 1386-1402 (2007).
    [49] Floyd, E. R., “Welcher Weg? A trajectory representation of a quantum Young’s diffraction experiment”, Found. Phys. 37, pp. 1403-1420 (2007).
    [50] Faraggi, A. E., Matone, M., “Quantum transformations”, Phys. Lett. A 249, pp. 180-190 (1998).
    [51] Faraggi, A. E., Matone, M., “The equivalence principle of quantum mechanics: uniqueness theorem”, Phys. Lett. B 437, pp. 369-380 (1998).
    [52] Faraggi, A. E., Matone, M., “Equivalence principle, Planck length and quantum Hamilton-Jacobi equation”, Phys. Lett. B 445, pp. 77-81 (1998).
    [53] Faraggi, A. E., Matone, M., “Equivalence principle: tunneling, quantized spectra and trajectories from the quantum HJ equation”, Phys. Lett. B 445, pp. 357-365 (1999).
    [54] Faraggi, A. E., Matone, M., “Quantum mechanics from an equivalence principle”, Phys. Lett. B 450, pp. 34-40 (1999).
    [55] Faraggi, A. E., Matone, M., “The equivalence postulate of quantum mechanics”, Int. J. Mod. Phys. A 15, pp. 1869-2017 (2000).
    [56] Shudo, A., Ikeda, K. S., “Complex classical trajectories and chaotic tunneling”, Physical Review Letters, 74, pp. 682-685 (1995).
    [57] Yang, C. D, “Wave-particle duality in complex space”, Annals of Physics, 319, pp. 444-470 (2005).
    [58] Goldfarb, Y., Degani, I., and Tannor, D. J., “Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics”, J. Chemical Physics, 125, 231103 (2006).
    [59] Chou, C. C., and Wyatt, R. E., “Quantum trajectories in complex space: one-dimensional stationary scattering problems”, J. Chemical Physics, 128, 154106 (2008).
    [60] Sanz, A. S., and Miret-Artes, “Interplay of causticity and verticality within the complex quantum Hamilton-Jacobi formalism”, Chemical Physics Letters, 458, pp. 239-243 (2008).
    [61] Poirier, B., and Tannor, D., “An action principle for complex quantum trajectories”, Int. J. Interface between Chemistry and Physics, 110, pp. 897-908 (2012).
    [62] Dey, S. and Fring, A., “Bohm quantum trajectories from coherent states”, Physical Review A., 88, 022116 (2013).
    [63] Yang, C. D., and Su, K. C., “Reconstructing interference fringes in slit experiments by complex quantum trajectories”, Int. J. Quantum Chemistry, 113, pp. 1253-1263 (2013).
    [64] Mahler, D. H., Rozema, L., et al., “Experimental nonlocal and surreal Bohmian trajectories”, Science Advances, 2, 1501466 (2016).
    [65] Procopio, L. M., Rozema, L. A., and et al., “Single-photon test of hyper-complex quantum theories using a metamaterial”, Nature Communications, 8, 15044 (2017).
    [66] Davidson, M., “Bohmian trajectories for Kerr-Newman particles in complex space-time”, Foundation of Physics, 11, pp. 1590-1616 (2018).
    [67] John, M.V., “Modified de Broglie–Bohm approach to quantum mechanics”, Found. Phys. Lett. 15, pp. 329-343 (2002).
    [68] John, M. V., “Probability and complex quantum trajectories”, Annals of Physics, 324, pp. 220-231 (2008).
    [69] Leacock, R. A. and Padgett, M. J., “Hamilton-Jacobi Theory and the Quantum Action Variable”, Phys. Rev. Lett. 50, 3 (1983).
    [70] Leacock, R. A. and Padgett, M. J., “Hamilton- Jacobi/action-angle quantum mechanics”, Phys. Rev. D, 28, 2491 (1983).
    [71] Yang, C. D., Cheng L. L., “Optimal guidance law in quantum mechanics”, Annals of Physics, 338167, 185 (2013).
    [72] Yang, C. D., Han, S. I., “Complex Space Nature of the Quantum World: Return Causality to Quantum Mechanics”. Intechopen, 91667 (2020).
    [73] Yang, C. D., “Quantum Hamilton Mechanics: Hamilton Equations of Quantum Motion, Origin of Quantum Operators, and Proof of Quantization Axiom”, Annals of Physics, 321, pp. 2876-2926 (2006).
    [74] Yang, C. D., “Complex tunneling dynamics”, Chaos, Solitons & Fractals, 32, pp. 312-345 (2007).
    [75] Yang, C. D., “Modeling Quantum Harmonic Oscillator in Complex Domain,” Chaos, Solitons, & Fractals, Vol. 30, pp. 342-362 (2006).
    [76] Yang, C. D., Wei, C. H., “Synthesizing Quantum Probability by a Single Chaotic Complex-Valued Trajectory”, International Journal of Quantum Chemistry, 116, pp. 428-437 (2016).
    [77] Bohr, N. “On the constitution of atoms and molecules”, Part I. Philoso. Mag., 26, 1 (1913).
    [78] Bohr, N. “On the quantum theory of line spectra”. In Van der Waerden B. L. (ed.) Sources of Quantum Mechanics, Amsterdam: North-Holland, pp. 95-136 (1918).
    [79] Born, M., Quantum mechanics. In Van der Waerden B. L. (ed.) Sources of Quantum Mechanics, Amsterdam: North-Holland, pp. 181-198 (1918).
    [80] Heisenberg, W.: The physical principles of the quantum theory. Translated by Eckart, C. and Hoyt, F. C., Dover, New York, p.116 (1949).
    [81] Kramers, H. A.: Intensities of spectral lines. In Kramers H. A., Collected Scientific Papers, Amsterdam: North-Holland, pp. 1-108 (1956).
    [82] Kiran, M., John, M. V., “Tunneling in energy eigen states and complex quantum trajectories”, Quant. Stud. Math. Found. 2, 403(2015).
    [83] Nanayakkara, A., “Classical trajectories of 1D complex non-Hermitian Hamiltonian systems”, J. Phys. A: Math. and Gen. 37, 4321 (2004).
    [84] Cheng, J., “Chaotic dynamics in a periodically driven spin-1 condensate”, Phys. Rev. A. 81, 023619-1 (2010).
    [85] Sanz, A. S., Borondo, F., Miret-Ates, S., “Particle diffraction studied using quantum trajectories”, J. Phys. Cond. Matt. 14, 6109 (2002).
    [86] Mostafazadeh, A., “Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies”, Phys. Rev. Lett., 102, 220402 (2009).
    [87] Yang, C. D., Han, S. Y., “Trajectory interpretation of correspondence principle: solution of nodal issue”, arXiv, 1911, 04747[quant-ph] (2019).
    [88] Yang, C. D., Kuo, C. H., “Quantization and bifurcation beyond square-integrable wavefunctions”, Entropy, 20, 327 (2018).
    [89] Wilson, W., “The quantum theory of radiation and line spectra”, Phil. Mag, 29, 795 (1915).
    [90] Sommerfeld, A., “Zur Quantentheorie der Spektrallinien, I. Theorie der Balmerschen Serie”, Ann. Phys., 51 (1916).
    [91] Wentzel. G., “A generalization of the quantum constraints for the purposes of the wave mechanics”, [J]. Z. Physik 38, 518 (1926).
    [92] Kramers, H. A., “Wave mechanics and half-integral quantization”, J. Z. Physik 39, 828 (1926).
    [93] Brillouin, L., Hebd, C.R., “The undulatory mechanics of Schrodinger”, J. Acad. Sci. 183, 24 (1926).
    [94] Curtis, L. J., Ellis, D.G., “Use of the Einstein-Brillouin-Keller action quantization” [J]. Am. J. Phys. 72, 1521 (2004).
    [95] Larkoski, A. J., Ellis, D. G., Curtis, L. J., “Numerical implementation of Einstein-Brillouin-Keller quantization for arbitrary potentials”, [J]. Am. J. Phys. 74, 572 (2006).
    [96] Chen, W., Hong, T., Lin, H., “Semiclassical quantization rule for the bound-state spectrum in quantum dots: scattering phase approximation”, [J]. Phys. Rev. A 68, 205104 (2003).
    [97] Einstein, A., “Zur Quantentheorie der Strahlung”, [J]. Ver. Deut. Phys. Ges. 19, 82 (1917).
    [98] Brillouin, L., “Remarques sur la me´canique ondulatoire [J]. J. Phys. Radium 7, 353 (1926).
    [99] Keller, J., “Corrected Bohr-Sommerfeld quantization conditions for nonseparable systems”, [J]. Ann. Phys. 4, 180 (1958).
    [100] Cao Zhuangqi, Cheng Yin, “Advances in One-Dimensional Wave Mechanics”, Springer Heidelberg New York Dordrecht London, p.47 (2013).
    [101] Gieres, F., “Mathematical surprises and Dirac’s formalism in quantum mechanics”, Rep. Prog. Phys. 63, preprint quant-ph/9907069, pp. 1893-1946 (2000).
    [102] Obanian, C., Hans, “What is spin?”, Am. J. Phys. 54, 500 (1986).
    [103] Kocsis, S., et al., “Observing the average trajectories of single photons in a two-slit interferometer”, Science, 332, pp. 1170-1173 (2001).
    [104] Aharonov, Y., Albert, D. Z. and Vaidman, L., “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100”, Phys. Rev. Lett. 60, 1351 (1988).
    [105] Aharonov, Y., Botero, A., “Quantum averages of weak values”. Physical Review A. 72, 052111 (2005).
    [106] Dressel, J., Jordan, A. N., “Significance of the imaginary part of the weak value”, Physical Review A, 85, 012107 (2012).
    [107] Mori, T., Tsutsui, I., “Quantum trajectories based on the weak value”. Progress of Theoretical and Experimental Physics, 043A01 (2015).
    [108] Mori, T., Tsutsui, I., “Weak value and the wave-particle duality”, Quantum Studies: Mathematics and Foundations volume 2, pp. 371–378 (2015).
    [109] Lars, M. Johansen, Alfredo Luis, “Nonclassicality in Weak Measurements”, Phys. Rev. A. 70. 052115 (2004).

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE