| 研究生: |
魏毓亭 Wei, Yu-Ting |
|---|---|
| 論文名稱: |
地電阻法應用於探測地下異質性之研究 Application of ERT Method on Detecting Underground Abnormality |
| 指導教授: |
倪勝火
Ni, Sheng-Huo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 土層 、地電阻影像法 、非破壞性檢測 、視電阻率 、異質性 |
| 外文關鍵詞: | soil deposit, electrical resistivity tomography, nondestructive test, apparent resistivity, abnormality |
| 相關次數: | 點閱:150 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的是應用地電阻影像剖面法,對地下結構的異質性進行探測。而地電阻影像剖面法,是透過電流於地層中的流動,量測電位,以測其視電阻率,最後經反算獲得地層真實電阻率,求得地層的電阻率剖面圖,由電阻率的差異,分析及判別地下結構的異質性。
本文研究兩個案,第一案為興建中水庫,於南壩及副壩之壩心處進行施測,探測壩基回填滾壓夯實後的土層狀況,並將結果配合水庫相關檢測報告,發現兩者結果大致相符。第二案則於成功大學土木系系館北側進行地下異質性的探測,主要欲探測研究用基樁的深度,並利用不同間距與Wenner、Schlumberger 和Dipole - Dipole 等三種排列方式進行探測,將結果綜合比較。結果發現,測線東側由於地下結構為回填材料,結構複雜且質地不均勻,造成電阻率變化大於草地上研究用基樁與土壤的電阻率差異,導致基樁處不易判別。另外,於反算結果發現,東側以鋼筋代替不鏽鋼棒的電極所測得資料,常出現過高電阻值,或因電阻值過高而未取得資料,疑是使用鋼筋代替不鏽鋼棒,使其電流較不易傳入地下。因此,於草地再進行施測,結果與先前於草地上測試的資料做比對,發現利用鋼筋代替不鏽鋼棒所測之實際測深較淺。
The purpose of this study is to use electrical resistivity tomography (ERT) method to survey the underground abnormal composition through different level of electrical resistivity. By applying electrical current through the soil and measuring the specific resistance of the underground soil, the resistance data of solid or rock can be analyzed. Thus, the underground profile can be obtained due to the difference resistivity of soil deposit.
Two sites are investigated in this study. The first site is to explore the soil profile of the two dams of a new under construction reservoir, which used back-filled, rolled, and compacted methodology of construction. The results show that there are the same characteristics as the reservoir’s survey report. The second site is located at the north side of the civil engineering building in the National Cheng Kung University. The main purpose of this exploration is to determine the depth of foundation pile. After applying three different patterns of examinations, i.e. the Wenner array, Schlumberger array, and ipole-Dipole array, the results show that the depth of the foundation pile is not easy to be detected. This may be due to the soil profile under both sides of survey line is different. East side is a back-filled material, while the west side is pure soil deposits. In the measurement, the different metal electrodes, one is rebar (the east side) while the other is stainless steel (the west side), were used. The data of specific resistance of the back-filled material on the east side of the survey line is greater than those of the other side. For the purpose of comparison, the same soil site was used with different metal electrodes. The result shows that the survey depth is shallow as the rebar is used.
1. 尤仁弘,「應用地電阻影像法於壩體潛在滲漏之研究」,碩士論文,國立台灣交通大學土木工程學系碩士班(2006)。
2. 王子賓,「結合地電阻影像剖面法及透地雷達法調查DNAPLs 之案例研究」,碩士論文,國立中央大學應用地質研究所(2005)。
3. 吳文賢,「利用第電阻法探查地層分部特性─以烏溪鳥嘴潭人工湖址為例」,水利,第21 期,第331-338 頁(2001)。
4. 李維峰,張嘉峰,梅興泰,蔡道賜,「地電阻影像剖面探測法於地下工程之應用」,地工技術,第108 期,第91-104 頁(2006)。
5. 周允文,謝政璋,蔡同宏,劉振維,「地電阻影像剖面法應用於莫拉克風災後高133 線不老溫泉區之地滑調查與研析」,中華技術,第87期,第128 - 143 頁(2010)。
6. 姚奕全,「應用地電阻法於崩積層含水特性調查與監測之初探」,碩士論文,國立交通大學土木工程學系碩士班(2007)。
7. 洪彥豪,「應用地電阻影像剖面法於湖口斷層之研究」,碩士論文,國立中央大學應用地質研究所(2004)。
8. 洪瑛鈞,尤仁弘,林志平,廖志中,胡賢能,張震成,「地電阻剖面影像探測在新竹斷層調查之應用」,岩盤工程研討會論文集,台南,第559 - 568 頁(2006)。
9. 梁勛泓,「潮州斷層之電阻率構造研究」,碩士論文,國立中央大學應用地質研究所(2007)。
10. 陳宜傑,「應用地電阻法於土石流地滑之研究」,碩士論文,國立中央大學應用地質研究所(2004)。
11. 陳昱源,「應用地電阻影像法探測墩基深度之初步研究」,碩士論文,國立成功大學土木工程研究所(2009)。
12. 馮正一,陳奕凱,鄭旭涵,「應用ERT 法於崩塌地特性調查與水分變化之研究」,中華水土保持學報,第41 卷,第1 期,第15-26 頁(2010)。
13. 馮正一,鄒佩蓉,陳奕凱,鄭旭涵,「應用地電阻剖面法於土壤地層水分變化與SPT-N 值比對」,中華水土保持學報,第42 卷,第1 期,第57-66 頁(2011)。
14. 劉奕,「穩態振動法於探測含樁帽基樁長度之實驗研究」,碩士論文,國立成功大學土木工程研究所(2011)。
15. 潘宏璋,「應用地電阻影像剖面法於新竹斷層之研究」,碩士論文,國立中央大學應用地質研究所(2003)。
16. 蔡嘉信,「應用地電阻法研究南崁斷層」,碩士論文,國立中央大學應用地質研究所(2008)。
17. 蕭仲富,馮正一,「應用邊緣偵測法於地電阻試驗結果之地層分界判釋」,中華水土保持學報,第42 卷,第2 期,第131-139 頁(2011)。
18. Advanced Geosciences Inc., Instruction manual for EarthImager 2D, Austin, TX, USA (2008).
19. Advanced Geosciences Inc., Instruction manual for the SuperStingTM with SwiftTM automatic resistivity and IP system, Austin, TX, USA (2005).
20. Athanasiou E., Tsourlos P., Tsokas G., Papazachos C., and Vargemezis G., “Non-destructive DC resistivity surveying using flat-base electrodes,” Near surface, Palermo, Italy, pp. 4-7 (2005).
21. Barker, R., and Moore, J., “The application of time-lapse electrical tomography in groundwater studies,” The leading edge, Vol. 17, No. 10, pp.1454-1458 (1988).
22. Bergstrom, G., “Forsok med elektrisk malmletning,” Sveriges geologiska undersoknings arsbok Stockholm 7, pp. 1–10 (1913).
23. Burger, R.H., Exploration geophysics of the shallow subsurface, Prentice Hall, Houston, TX, U.S.A. (1992).
24. Butsuri, T.G., Application of geophysical methods to engineering and environmental problems, Society of Exploration Geophysicists of Japan, Japan (2004).
25. Cassiani, G., Bruno, V., Villa, A., Fusi, N., and Binley, A.M., “A saline trace test monitored via time-lapse surface electrical resistivity tomography,” Journal of applied geophysics, Vol. 59, pp. 244-259 (2006).
26. Claerbout, J.F., and Muir, F., “Robust modeling with erratic data,” Geophysics, Vol. 38, No. 5, pp. 826-844 (1973).
27. Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s Inversion: A practical algorithm for generating smooth models from electromagnetic sounding data,” Geophysics, Vol. 52, No. 3, pp. 289-300 (1987).
28. Dahlin, T., “The development of a cable system for vertical electrical sounding and a comparison of the Schlumberger and offset Wenner methods,” Licentiate thesis LUTVDG/(TVTG-1005), Lund University (1989).
29. Dahlin, T., ”The development of DC resistivity imaging techniques,” Computers and geosciences, Vol. 27, pp. 1019-1029 (2001).
30. Dahlin, T., and Leroux, V., “Time-lapse resistivity investigation for imaging saltwater transport in glaciofluvial deposit,” Environmental geology, Vol. 49, No. 3, pp. 347-358 (2006).
31. deGroot-Headlin, C., and Constable, S., “Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data,” Geophysics, Vol. 55, No. 12, pp. 1613-1624 (1990).
32. Edwards, L.S., “A modified pseudo-section for resistivity and induced polarization,” Geophysics, Vol. 42, No. 5, pp. 1020-1036 (1977).
33. Hsu, H.L., Yanites, B.J., Chen, C.C. and Chen, Y.G., “Bedrock detection using 2D electrical resistivity imaging along the Peikang River, central Taiwan,” Geomorphology, Vol. 114, No. 3, pp. 406-414 (2010).
34. Hubbert, M.K., “The theory of ground-water motion,” Journal of geology, Vol. 48, No. 8, pp.785-944 (1940).
35. Inman, J.R., “Resistivity inversion with ridge regression,” Geophysics, Vol. 40, No. 5, pp. 798-817 (1975).
36. Karastathis, V.K., Karmis, P.N., Drakatos, G. and Stavrakakis, G., “Geophysical methods contributing to the testing of concrete dams. Application at the Marathon Dam,” Journal of applied geophysics, Vol. 50, No. 3, pp. 247-260 (2002).
37. Kearey, P., Brooks, M., and Hill, I., An introduction to geophysical Exploration, Blackwell science, Oxford, pp. 183-207 (2002).
38. Khan, M.S., “Evaluation of resistivity imaging (RI) method for determining unknown deep foundation depth,” MS. thesis, UT Arlington, Arlington, TX. (2011).
39. Lataste, J.F., Sirieix, C., Breysse, D., and Frappa, M., “Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering,” NDT&E international, Vol. 36, No. 6, pp. 383-394 (2003).
40. Loke, M.H., “Time-lapse resistivity imaging inversion,” Proceedings of the 5th meeting of the environmental and engineering geophysical society european section, Em 1 (1999).
41. Loke, M.H., Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Malaysia, pp. 11-17 (2003).
42. Loke, M.H., RES2DINV ver.3.59, Geotomo Software, Malaysia (2007).
43. Loke, M.H., Acworth, I., and Dahlin, T., “A comparison of smooth and blocky inversion method in 2D electrical imaging surveys,” Exploration geophysics, Vol. 34, No. 3, pp. 182-187 (2003).
44. Loke, M.H., and Barker, R.D., “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method,” Geophsical prospecting, Vol. 44, pp. 131-152 (1996).
45. Loke, M.H., and Dahlin, T., “A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion,” Journal of applied geophysics, Vol. 49, No. 3, pp. 149-162 (2002).
46. Olayinka, A.I., and Yaramanic, U., “Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion,” Journal of applied geophysics, Vol. 45, No. 2, pp. 63-81 (2000).
47. Petersson, W., “Om malmsokande medelst elektricitet,” Jern-Kontorets annaler 2–3, pp. 153–171 (1907).
48. Rhoades, J.D., Manteghi, N.A., Shouse, P.J., and Alves, W.J., “Soil electrical conductivity and soil salinity: new formulations and calibrations,” Soil science society of America journal, Vol. 53, No. 2, pp.433-439 (1989).
49. Sauer, M.C., Southwick, P.F., Spiegler, K.S., and Wyllie, M.R.J., “Electrical conductance of porous plugs ion exchange resin-solution system,” Industrial and engineering chemistry, Vol. 47, No. 10, pp. 2187-2193 (1955).
50. Schlumberger, C., Etude sur la prospection electrique du sous-sol, Gauthier-Villars, Paris (1920).
51. Song, S.H., Song, Y., and Kwon, B.D., “Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam,” Exploration geophysics, Vol. 36, No. 1, pp. 92-96 (2005).
52. Sudha, K., Israil, M., Mittal, S., and Rai, J., “Soil characterization using electrical resistivity tomography and geotechnical investigations,” Journal of applied geophysics, Vol. 67, No. 1, pp. 74-79 (2009).
53. Van Nostrand, R.G., and Cook, K.L., Interpretation of resistivity data, USGS, Washington (1966).
54. Wolke, R., and Schwetlick, H., “Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisons,” SIAM journal on scientific and statistical computing, Vol. 9, No. 5, pp. 907–921 (1988).
55. Yang, X., and Lagmanson, M., Comparison of 2D and 3D electrical resistivity imaging methods, Advanced Geosciences, Inc., Austin, Texas (2006).