簡易檢索 / 詳目顯示

研究生: 呂紹辰
Lu, Shao-Chen
論文名稱: 探討mych (myelocytomatosis oncogene homolog)在斑馬魚早期胚胎發育的機制與基因補償作用
Investigating the role of mych (myelocytomatosis oncogene homolog) in early zebrafish development and its genetic compensation mechanism
指導教授: 盧福翊
Lu, Fu-i
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 73
中文關鍵詞: 斑馬魚mychWnt signaling早期發育基因補償作用
外文關鍵詞: Zebrafish, mych, Wnt signaling, early development, genetic compensation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 縮寫表 XI 一、研究背景 1 1-1 斑馬魚早期發育 1 1-2 Wnt訊息傳遞路徑與體軸發育機制 2 1-3 mych對於斑馬魚體軸的影響 4 1-4 mych 基因剔除並未出現發育上的缺陷 5 1-5 基因補償作用可能參與在mych(+2)突變品系中 6 1-6 避免基因補償作用的斑馬魚突變方式 7 1-7 建立避免基因補償作用的mych突變品系 8 1-8 研究目的 9 二、材料與方法 11 2-1 斑馬魚飼養與魚卵取得方式 11 2-2 Morpholino配置 11 2-3 顯微注射 12 2-4 原位雜交探針合成 12 2-5 胚胎蒐集與固定 12 2-6 全胚胎原位雜交(WISH) 13 2-7 sgRNA設計與合成 14 2-8 胚胎DNA萃取與分辨基因型 14 2-9 成魚DNA萃取與分辨基因型 15 2-10 胚胎RNA萃取 16 2-11 cDNA合成與即時聚合酶連鎖反應 16 2-12 crRNA-tracrRNA誘導的插入 17 2-13 生殖細胞因子誘導的初始生殖細胞 17 三、結果 19 3-1 抑制Upf1無法阻斷mych缺失引起的基因補償作用 19 3-2 抑制Upf3a阻斷mych缺失造成的compensation 19 3-3 建立mych 啟動子剔除品系 20 3-4 F1 mych 啟動子剔除品系的檢驗與篩選 21 3-5 建立mych全基因剔除品系 21 3-6 使用CRIMP建立mych基因剔除品系 22 3-7 利用8GMs誘導生殖細胞分化 23 3-8 探討 mych(+2) 表型缺失的其他機制 25 四、討論 26 4-1 參與NMD的蛋白中Upf3a是啟動基因補償機制的關鍵因子 26 4-2 mych會在合子時期後啟動腹側Wnt signaling 27 4-3 啟動子剔除與全基因剔除品系的篩選與建立 29 4-4 CRIMP技術是否能夠避免基因補償作用 29 4-5 如何提高flag tag 的敲入成功率 30 參考文獻 33 圖表 37 附錄 54

    Alexandra, K., and Walter, B. Wnt signalling and its impact on development and cancer. Nature Reviews Cancer 8, 387–398, 2008.
    Anderson, J.L., Mulligan, T.S., Shen, M.C., Wang, H., Scahill, C.M., Tan, F.J., Du, S.J., Busch-Nentwich, E.M., and Farber, S.A. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS Genetics 13, e1007105, 2017.
    Carrington, B., Ramanagoudr-Bhojappa, R., Bresciani, E., Han, T.U., and Sood, R. A robust pipeline for efficient knock-in of point mutations and epitope tags in zebrafish using fluorescent PCR based screening. BMC Genomics 23, 810, 2022.
    El-Brolosy, M.A., Kontarakis, Z., Rossi, A., Kuenne, C., Gunther, S., Fukuda, N., Kikhi, K., Boezio, G.L.M., Takacs, C.M., Lai, S.L., Fukuda, R., Gerri, C., Giraldez, A.J., and Stainier, D.Y.R. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193-197, 2019.
    Gilbert, S.F. Ebooksclub Developmental Biology 9Th Edition-xenopus and fish. 2010.
    Hino, H., Nakanishi, A., Seki, R., Aoki, T., Yamaha, E., Kawahara, A., Shimizu, T., and Hibi, M. Roles of maternal wnt8a transcripts in axis formation in zebrafish. Developmental Biology 434, 96-107, 2018.
    Hong, S.K., Tsang, M., and Dawid, I.B. The mych gene is required for neural crest survival during zebrafish development. PLoS One 3, e2029, 2008.
    Hoshijima, K., Jurynec, M.J., and Grunwald, D.J. Precise Editing of the Zebrafish Genome Made Simple and Efficient. Developmental Cell 36, 654-667, 2016.
    Hoshijima, K., Jurynec, M.J., Klatt Shaw, D., Jacobi, A.M., Behlke, M.A., and Grunwald, D.J. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Developmental Cell 51, 645-657 e644, 2019.
    Kalvaitytė, M., and Balciunas, D. Conditional mutagenesis strategies in zebrafish. Trends in Genetics, 2022.
    Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. Stages of embryonic development of the zebrafish. Developmental Dynamics 203(3):253-310. 1995
    Kok, F.O., Shin, M., Ni, C.W., Gupta, A., Grosse, A.S., van Impel, A., Kirchmaier, B.C., Peterson-Maduro, J., Kourkoulis, G., Male, I., DeSantis, D.F., Sheppard-Tindell, S., Ebarasi, L., Betsholtz, C., Schulte-Merker, S., Wolfe, S.A., and Lawson, N.D. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental Cell 32, 97-108, 2015.
    Kotkamp, K., Kur, E., Wendik, B., Polok, B.K., Ben-Dor, S., Onichtchouk, D., and Driever, W. Pou5f1/Oct4 promotes cell survival via direct activation of mych expression during zebrafish gastrulation. PLoS One 9, e92356, 2014.
    Langdon, Y.G., and Mullins, M.C. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annual Review Genetics 45, 357-377, 2011.
    Levic, D.S., Yamaguchi, N., Wang, S., Knaut, H., and Bagnat, M. Knock-in tagging in zebrafish facilitated by insertion into non-coding regions. Development 148, 2021.
    Li, W., Zhang, Y., Han, B., Li, L., Li, M., Lu, X., Chen, C., Lu, M., Zhang, Y., Jia, X., Zhu, Z., Tong, X., and Zhang, B. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. Elife 8, 2019.
    Lu, F.I., Sun, Y.H., Wei, C.Y., Thisse, C., and Thisse, B. Tissue-specific derepression of TCF/LEF controls the activity of the Wnt/beta-catenin pathway. Nature Communications 5, 5368, 2014.
    Lu, H., Liu, J., Feng, T., Guo, Z., Yin, Y., Gao, F., Cao, G., Du, X., and Wu, S. A HIT-trapping strategy for rapid generation of reversible and conditional alleles using a universal donor. Genome Res 31, 900-909, 2021.
    Ma, Z., Zhu, P., Shi, H., Guo, L., Zhang, Q., Chen, Y., Chen, S., Zhang, Z., Peng, J., and Chen, J. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259-263, 2019.
    Manuel Leichsenring, Julia Maes, RebeccaMössner, Wolfgang Driever, and Onichtchouk, D. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341(6149):1005-9, 2013
    Mi, J., and Andersson, O. Efficient knock-in method enabling lineage tracing in zebrafish. Life Science Alliance 6, 2023.
    Miles, L.B., Calcinotto, V., Oveissi, S., Serrano, R.J., Sonntag, C., Mulia, O., Lee, C., and Bryson-Richardson, R.J. CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit. Nature Communications 15, 5011, 2024.
    Popp, M.W., and Maquat, L.E. Leveraging Rules of Nonsense-Mediated mRNA Decay for Genome Engineering and Personalized Medicine. Cell 165, 1319-1322, 2016.
    Prill, K., and Dawson, J.F. Homology-Directed Repair in Zebrafish: Witchcraft and Wizardry? Frontiers in Molecular Biosciences 7, 595474, 2020.
    Ramel, M.-C., and Lekven, A.C. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, 3991-4000, 2004.
    Ramel, M.C., Buckles, G.R., Baker, K.D., and Lekven, A.C. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Developmental Biology 287, 237-248, 2005.
    Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., and Stainier, D.Y. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233, 2015.
    Rouf, M.A., Wen, L., Mahendra, Y., Wang, J., Zhang, K., Liang, S., Wang, Y., Li, Z., Wang, Y., and Wang, G. The recent advances and future perspectives of genetic compensation studies in the zebrafish model. Genes and Diseases 10, 468-479, 2023.
    Seiliez, I., Thisse, B., and Thisse, C. FoxA3 and goosecoid promote anterior neural fate through inhibition of Wnt8a activity before the onset of gastrulation. Developmental Biolology 290, 152-163, 2006.
    She, J., Wu, Y., Lou, B., Lodd, E., Klems, A., Schmoehl, F., Yuan, Z., Noble, F.L., and Kroll, J. Genetic compensation by epob in pronephros development in epoa mutant zebrafish. Cell Cycle 18, 2683-2696, 2019.
    Shum, E.Y., Jones, S.H., Shao, A., Chousal, J.N., Krause, M.D., Chan, W.K., Lou, C.H., Espinoza, J.L., Song, H.W., Phan, M.H., Ramaiah, M., Huang, L., McCarrey, J.R., Peterson, K.J., De Rooij, D.G., Cook-Andersen, H., and Wilkinson, M.F. The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay. Cell 165, 382-395, 2016.
    Stanford WL, C.J., Cordes SP. Gene-trap mutagenesis: past, present and beyond. Nature Review Genetics, 2001.
    Wang, X., Zhu, J., Wang, H., Deng, W., Jiao, S., Wang, Y., He, M., Zhang, F., Liu, T., Hao, Y., Ye, D., and Sun, Y. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nature Communications 14, 7918, 2023.
    Wang, Y., Zhai, Y., Zhang, M., Song, C., Zhang, Y., and Zhang, G. Escaping from CRISPR-Cas-mediated knockout: the facts, mechanisms, and applications. Cell Molecular Biology Letters 29, 48, 2024.
    Wierson, W.A., Welker, J.M., Almeida, M.P., Mann, C.M., Webster, D.A., Torrie, M.E., Weiss, T.J., Kambakam, S., Vollbrecht, M.K., Lan, M., McKeighan, K.C., Levey, J., Ming, Z., Wehmeier, A., Mikelson, C.S., Haltom, J.A., Kwan, K.M., Chien, C.B., Balciunas, D., Ekker, S.C., Clark, K.J., Webber, B.R., Moriarity, B.S., Solin, S.L., Carlson, D.F., Dobbs, D.L., McGrail, M., and Essner, J. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. Elife 9, 2020.
    Wittkopp, N., Huntzinger, E., Weiler, C., Sauliere, J., Schmidt, S., Sonawane, M., and Izaurralde, E. Nonsense-mediated mRNA decay effectors are essential for zebrafish embryonic development and survival. Molecular Cellular Biology 29, 3517-3528, 2009.
    Xie, A., Ma, Z., Wang, J., Zhang, Y., Chen, Y., Yang, C., Chen, J., and Peng, J. Upf3a but not Upf1 mediates the genetic compensation response induced by leg1 deleterious mutations in an H3K4me3-independent manner. Cell Discovery 9, 63, 2023.
    Zhang, F., Li, X., He, M., Ye, D., Xiong, F., Amin, G., Zhu, Z., and Sun, Y. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted PGCs. Journal of Genetics and Genomics, 2019.
    Zhiyong Mao, Michael Bozzella, Andrei Seluanov, and Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle, 2008.
    黃筱涵,探討mych (myelocytomatosis oncogene homolog)基因在斑馬魚早期胚胎發育時期中Wnt訊息傳遞路徑之角色,國立成功大學生物科技與產業科學系碩士論文,2019
    韓宗佑,探討mych (myelocytomatosis oncogene homolog)基因在斑馬魚早期胚胎發育體軸對稱的之角色,國立成功大學生物科技與產業科學系碩士論文,2016

    無法下載圖示 校內:2030-08-26公開
    校外:2030-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE