| 研究生: |
游鎮瑋 You, Chen-Wei |
|---|---|
| 論文名稱: |
以溶液加工法製備混合三溶劑鈣鈦礦太陽能電池 Fabricate Mixed Triple Solvents Perovskite Solar Cells by Solvent Engineering |
| 指導教授: |
高騏
Gau, Chie |
| 共同指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 前置溶液 、鈣鈦礦太陽能電池 、溶液加工法 、再結合現象 、光電轉換效率 |
| 外文關鍵詞: | precursor solution, perovskite solar cell, solvent engineering, recombination, photoelectric conversion efficiency |
| 相關次數: | 點閱:175 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討將三種前置溶劑依不同比例混合,以溶液加工法製備成鈣鈦礦太陽能電池元件的研究。使用反向結構:ITO glass / PEDOT:PSS (AI 4083) / perovskite / PCBM / BCP / Ag作為研究基礎。內容主要為兩大部分,第一部分為溶液加工法的使用及成效;第二部分為三種前置溶劑的特性與混合後的探討。
選用氯苯作為溶液加工法的沖洗溶劑,在旋塗鈣鈦礦層的過程中滴入氯苯藉由離心力帶走多餘溶劑,再經低溫退火形成緻密且均質的結晶、覆蓋率100%的鈣鈦礦薄膜,可有效優化和電子、電洞傳輸層的接面及減少再結合現象。
三種前置溶劑為二甲基亞碸(Dimethylsulfoxide, DMSO)、γ-丁內酯(gamma-Butyrolactone, GBL)及二甲基甲醯胺(N, N-Dimethylformamide, DMF),這些溶劑各有不同的沸點、揮發速度及其他特性,將三者依不同比例混合製備成元件,並探討其中的差異與趨勢。發現到在適當的比例趨勢之下,不僅能發揮單溶劑或雙溶劑的優勢,更能互相補足缺點,以提升整體元件的效能。而在極端或不適當的比例趨勢之下,三種溶劑無法有效匹配,反而導致元件效能降低。
最後以DMSO:GBL:DMF為5:2:3的比例成功製備出Voc=0.89 V,Jsc=19.45 mA/cm2,FF=0.76,效率高達13.1%的反向鈣鈦礦太陽能電池。重要的是,混合三溶劑以溶劑量比例為DMSO ≥ DMF > GBL的趨勢所製備成的鈣鈦礦太陽能電池再現性高,製作成本低,更能有不錯的光電轉換效率。
The thesis discusses the study of mixing three kinds of precursor solvents by different proportions and using solvent engineering to fabricate perovskite solar cells. We use inverted structure: ITO glass / PEDOT: PSS (AI 4083) / perovskite / PCBM / BCP / Ag as our base in this research. The main content is divided into two parts. In the first part, we describe the use and effectiveness of solvent engineering. In second part, we describe the characteristics of the three precursor solvents and the study of mixing triple solvents.
We choose chlorobenzene as washing solvent in solvent engineering. Dropping chlorobenzene can remove excess solvents by centrifugal force during spin coating process of making perovskite layer. Then we can get dense and homogeneous crystals and 100% coverage perovskite thin film after low-temperature annealing, which can effectively not only optimize the junction of electron and hole transport layer, but also reduce recombination.
Three kinds of precursor solvents are Dimethylsulfoxide (DMSO), gamma-Butyrolactone (GBL) and N, N-Dimethylformamide (DMF), these solvents have different boiling point, evaporation rate and other characteristics. We mix these three solvents in different proportions to fabricate cells and explore the differences and trends. We found that in appropriate proportion trend, the cells not only can play the advantages of single solvent or double solvents, but also can complement each other’s shortcomings to enhance the effectiveness of the overall cells. While in extreme or inappropriate proportion trend, this three solvents can’t match to each other effectively, so lead the performance worse.
Finally, we use the ratio of DMSO:GBL:DMF=5:2:3 to fabricate inverted perovskite solar cell with Voc=0.89 V,Jsc=19.45 mA/cm2,FF=0.76 and PCE=13.1% successfully. Importantly, the perovskite solar cells with the trend of mixed triple solvents volume DMSO≥DMF>GBL have high reproducibility, low costs and good photoelectric conversion efficiency.
[1] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. Diau, C. Y. Yeh, S. M. Zakeeruddin, M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency," Science, 334, 629-634 (2011).
[2] H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, "An efficient and low-cost TiO2 compact layer for performance improvement of dye-sensitized solar cells," Electrochimica Acta, 54, 1319-1324 (2009).
[3] I. Chung, B. Lee, J. He, R. P. Chang, M. G. Kanatzidis, "All-solid-state dye-sensitized solar cells with high efficiency," Nature, 485, 486-489 (2012).
[4] G. Hodes, D. Cahen, "Perovskite cells roll forward," Nature Photonics, 8, 87-88 (2014).
[5] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, 131, 6050-6051 (2009).
[6] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, 3, 4088-4093 (2011).
[7] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park, "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific Reports, 2, 591 (2012).
[8] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, 338, 643-647 (2012).
[9] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells," Nano Letters, 13, 1764-1769 (2013).
[10] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, 499, 316-319 (2013).
[11] M. Liu, M. B. Johnston, H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, 501, 395-398 (2013).
[12] D. Liu, T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature Photonics, 8, 133-138 (2013).
[13] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, "Interface engineering of highly efficient perovskite solar cells," Science, 345, 542-546 (2014).
[14] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, 348, 1234-1237 (2015).
[15] Z. Yuan, Z. Wu, S. Bai, Z. Xia, W. Xu, T. Song, H. Wu, L. Xu, J. Si, Y. Jin, B. Sun, "Hot-electron injection in a sandwiched TiOx-Au-TiOx structure for high-performance planar perovskite solar cells," Advanced Energy Materials, 5, 1500038 (2015).
[16] J. Song, E. Zheng, J. Bian, X.-F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, "Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells," Journal of Materials Chemistry A, 3, 10837-10844 (2015).
[17] J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, "Highly efficient planar perovskite solar cells through band alignment engineering," Energy & Environmental Science, 8, 2928-2934 (2015).
[18] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, T. C. Wen, "CH3NH3PbI3 perovskite / fullerene planar-heterojunction hybrid solar cells," Advanced Materials, 25, 3727-3732 (2013).
[19] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, "The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells," Energy & Environmental Science, 7, 399-407 (2014).
[20] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith, "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates," Nature Communications, 4, 2761 (2013).
[21] J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility," American Chemical Society Nanotechnology, 8, 1674-1680 (2014).
[22] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process," Energy & Environmental Science, 7, 2359-2365 (2014).
[23] C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, "Planar heterojunction perovskite / PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process," Journal of Materials Chemistry A, 2, 15897-15903 (2014).
[24] J. Kim, G. Kim, T. K. Kim, S. Kwon, H. Back, J. Lee, H. Lee, H. Kang, K. Lee, "Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer," Journal of Materials Chemistry A, 2, 17291-17296 (2014).
[25] H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, C. J. Brabec, "Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer," Chemistry of Materials, 26, 5190-5193 (2014).
[26] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, "Perovskite solar cells employing organic charge-transport layers," Nature Photonics, 8, 128-132 (2013).
[27] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, 7, 2619 (2014).
[28] J. Seo, S. Park, Y. Chan Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok, "Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells," Energy & Environmental Science, 7, 2642 (2014).
[29] J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, "Moisture assisted perovskite film growth for high performance solar cells," Applied Physics Letters, 105, 183902 (2014).
[30] W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science, 347, 522-525 (2015).
[31] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, "Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency," Energy & Environmental Science, 8, 1602-1608 (2015).
[32] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, T. J. White, "Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, 1, 5628 (2013).
[33] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3," Solid State Communications, 127, 619-623 (2003).
[34] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties," Inorganic Chemistry, 52, 9019-9038 (2013).
[35] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, 342, 341-344 (2013).
[36] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, S. I. Seok, "Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors," Nature Photonics, 7, 486-491 (2013).
[37] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, "Mesoscopic CH3NH3PbI3 / TiO2 heterojunction solar cells," Journal of the American Chemical Society, 134, 17396-17399 (2012).
[38] E. Edri, S. Kirmayer, D. Cahen, G. Hodes, "High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite," The Journal of Physical Chemistry Letters, 4, 897-902, (2013).
[39] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, L. Spiccia, "A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells," Angewandte Chemie International Edition in English, 53, 9898-9903 (2014).
[40] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, "Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency," Energy & Environmental Science, 7, 1142-1147 (2014).
[41] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, "Low-temperature processed meso-superstructured to thin-film perovskite solar cells," Energy & Environmental Science, 6, 1739 (2013).
[42] A. Dualeh, T. Moehl, N. Tetreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. Grätzel, "Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells," American Chemical Society Nanotechnology, 8, 362-373 (2014).
[43] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, "Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells," Advanced Functional Materials, 24, 3250-3258 (2014).
[44] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Jen, H. J. Snaith, "High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers," Nano Letters, 13, 3124-3128 (2013).
[45] S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, R. Mosca, "MAPbI3-xClx mixed halide perovskite for hybrid solar xells: the role of chloride as dopant on the transport and structural properties," Chemistry of Materials, 25, 4613-4618 (2013).
[46] P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Jen, "Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells," Advanced Materials, 26, 3748-3754 (2014).
[47] M. Gratzel, "The light and shade of perovskite solar cells," Nature Materials, 13, 838-842 (2014).
[48] S. T. Williams, F. Zuo, C. C. Chueh, C. Y. Liao, P. W. Liang, A. K. Jen, "Role of chloride in the morphological evolution of organo-lead halide perovskite thin films," American Chemical Society Nanotechnology, 8, 10640-10654 (2014).
[49] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, "Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, 342, 344-347 (2013).
[50] Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, "Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition," Energy & Environmental Science, 7, 2934 (2014).
[51] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, "Planar heterojunction perovskite solar cells via vapor-assisted solution process," Journal of the American Chemical Society,, vol. 136, pp. 622-5, Jan 15 2014.
[52] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, "Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement," Advanced Materials, 26, 6503-6509 (2014).
[53] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel, N. G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells," Nature Nanotechnology, 9, 927-932 (2014).
[54] D. B. Mitzi, M. T. Prikas, K. Chondroudis, "Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique," Chemistry of Materials, 11, 542-544 (1999).
[55] O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K. Nazeeruddin, H. J. Bolink, "Metal-oxide-free methylammonium lead iodide perovskite-based solar cells: the influence of organic charge transport layers," Advanced Energy Materials, 4, 1400345 (2014).
[56] H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N. P. Padture, G. Cui, "Vapour-based processing of hole-conductor-free CH3NH3PbI3 perovskite / C60 fullerene planar solar cells," RSC Advances, 4, 28964 (2014).
[57] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nature Materials, 13, 897-903 (2014).
[58] H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim, "Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite / fullerene hybrid solar cells," Nanoscale, 6, 6679-6683 (2014).
[59] N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Gratzel, S. I. Seok, "Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials," Journal of the American Chemical Society, 135, 19087-19090 (2013).
[60] J. A. Christians, R. C. Fung, P. V. Kamat, "An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide," Journal of the American Chemical Society, 136, 758-764 (2014).
[61] K. Norrman, M. V. Madsen, S. A. Gevorgyan, F. C. Krebs, "Degradation patterns in water and oxygen of an inverted polymer solar cell," Journal of the American Chemical Society, 883-16892, (2010).
[62] J. Y. Jeng, K. C. Chen, T. Y. Chiang, P. Y. Lin, T. D. Tsai, Y. C. Chang, T. F. Guo, P. Chen, T. C. Wen, Y. J. Hsu, "Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite / PCBM planar-heterojunction hybrid solar cells," Advanced Materials, 26, 4107-4113 (2014).
[63] K. C. Wang, J. Y. Jeng, P. S. Shen, Y. C. Chang, E. W. Diau, C. H. Tsai, T. Y. Chao, H. C. Hsu, P. Y. Lin, P. Chen, T. F. Guo, T. C. Wen, "P-type mesoscopic nickel oxide / organometallic perovskite heterojunction solar cells," Scientific Reports, 4, 4756 (2014).
[64] K. C. Wang, P. S. Shen, M. H. Li, S. Chen, M. W. Lin, P. Chen, T. F. Guo, "Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO / CH3NH3PbI3 perovskite heterojunction solar cells," ACS Applied Materials & Interfaces, 6, 11851-11858 (2014).
[65] W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, H. J. Snaith, "Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles," Nano Letters, 13, 4505-4510 (2013).
[66] E. J. Crossland, N. Noel, V. Sivaram, T. Leijtens, J. A. Alexander-Webber, H. J. Snaith, "Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance," Nature, 495, 215-219 (2013).
[67] H.-L. Yip, A. K. Y. Jen, "Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells," Energy & Environmental Science, 5, 5994 (2012).
[68] C. Bi, Y. Yuan, Y. Fang, J. Huang, "Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells," Advanced Energy Materials, 5, 1401616 (2015).
[69] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, "Effect of LiF / metal electrodes on the performance of plastic solar cells," Applied Physics Letters, 80, 1288 (2002).
[70] Y. Chen, J. Peng, D. Su, X. Chen, Z. Liang, "Efficient and balanced charge transport revealed in planar perovskite solar cells," ACS Applied Materials & Interfaces, 7, 4471-4475 (2015).
[71] C.-C. Chueh, S.-C. Chien, H.-L. Yip, J. F. Salinas, C.-Z. Li, K.-S. Chen, F.-C. Chen, W.-C. Chen, A. K. Y. Jen, "Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture," Advanced Energy Materials, 3, 417-423 (2013).
[72] J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li, C. J. Brabec, "Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance," Chemistry of Materials, 27, 227-234 (2015).
[73] C. Li, F. Wang, J. Xu, J. Yao, B. Zhang, C. Zhang, M. Xiao, S. Dai, Y. Li, Z. Tan, "Efficient perovskite / fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination," Nanoscale, 7, 9771-9778 (2015).
[74] A. R. Pascoe, N. W. Duffy, A. D. Scully, F. Huang, Y.-B. Cheng, "Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy," The Journal of Physical Chemistry C, 119, 4444-4453 (2015).
[75] J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J. P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych, E. H. Sargent, "Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes," Nature Communications, 6, 7081 (2015).
[76] C.-H. Chiang, C.-G. Wu, "Bulk heterojunction perovskite-PCBM solar cells with high fill factor," Nature Photonics, 10, 196-200 (2016)
[77] A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, F. De Angelis, "Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting," Nano Letters, 14, 3608-3616 (2014).
[78] N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, "Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting," Angewandte Chemie International Edition in English, 53, 3151-3157 (2014).
[79] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, "Compositional engineering of perovskite materials for high-performance solar cells," Nature, 517, 476-480 (2015).
[80] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications," Energy & Environmental Science, 7, 3061 (2014).
[81] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, "Lead-free solid-state organic–inorganic halide perovskite solar cells," Nature Photonics, 8, 489-494 (2014).
[82] F. Zuo, S. T. Williams, P. W. Liang, C. C. Chueh, C. Y. Liao, A. K. Jen, "Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells," Advanced Materials, 26, 6454-6460 (2014).
[83] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers," Science, 350, 944-948 (2015).