簡易檢索 / 詳目顯示

研究生: 林銘哲
Lin, Ming-Che
論文名稱: 流體在旋轉圓盤表面上薄膜流動之弱非線性液動穩定性
Weakly Nonlinear Hydrodynamic Stability of Fluid Film Flowing on a Rotating Circular Disk
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 128
中文關鍵詞: 薄膜流液動穩定性弱非線性分析Ginzburg-Landau方程式
外文關鍵詞: film flow, hydrodynamic stability, weakly nonlinear analysis, Ginzburg-Landau equation
相關次數: 點閱:114下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究流體在旋轉圓盤表面上之薄膜流動之弱非線性液動穩定性,探討目標侷限在線性穩定性分析之臨界值鄰近區域。首先利用長波微擾法得到薄膜流體之廣義非線性運動方程式,然後應用正模分析法研究薄膜流體之線性穩定性,並求得線性中立穩定曲線、線性振幅增長率及線性波速。在弱非線性穩定性分析,經由Ginzburg-Landau方程式探討薄膜流體在無條件穩定、亞臨界不穩定、超臨界穩定及超臨界爆炸解等四種臨界狀態存在之必要條件,並從中找出亞臨界區之有限振幅值、超臨界區之平解振幅值及非線性波速。
    研究內容主要針對代表旋轉效應之旋轉數及圓盤尺寸大小對不同流體系統穩定性之影響,本文選擇之流體範本分別為牛頓流體、微極流體、磁流體及具有相變化(凝結效應)之流體。茲將研究結果之結論歸納如下:
    (一)、旋轉數及圓盤半徑尺寸對於薄膜流體系統穩定性之影響
    對於上述四種薄膜流體範本系統而言,經由液動穩定性分析結果得知,旋轉數及圓盤半徑尺寸均具不穩定化效應,此現象之原因為統御方程式中存在之離心力與半徑尺寸相關,增加圓盤半徑尺寸及旋轉數,由於離心力使得線性擾動成長率增加。
    (二)、微極參數K對於薄膜微極流體穩定性之影響
    對薄膜微極流體而言,微極參數K視為穩定化因子,其原因為微粒旋轉過程中,部份動量喪失,所以渦流黏滯性導致在不同波間進行能量轉移並因而減緩表面波之振幅。
    (三)、哈德曼數(m)對於薄膜磁流體系統外加一均勻磁場穩定性之影響
    對於薄膜磁流體系統外加一均勻磁場而言,哈德曼數(m)具有穩定化效應,此現象之原因為勞倫茲力(Lorentz force)使得流體速度減緩並制約線性擾動成長率。
    (四)、凝結效應對於凝結薄膜流體系統穩定性之影響
    與薄膜牛頓流體比較,在相同操作條件下,凝結薄膜流之穩定性較佳,因此具凝結效應能穩定化薄膜流場。

    The paper investigates the weakly nonlinear hydrodynamic stability of fluid film flowing on a rotating circular disk. The target is restricted to some neighborhood of critical value in the linear stability analysis. First, a generalized nonlinear kinematic equation is derived by the long-wave perturbation method to represent a film flow. The method of normal mode is applied the linear stability. The neutral stability curve, the linear growth rate of the amplitudes and the linear wave speeds are obtained subsequently as the by-products of linear solution. The Ginzburg-Landau equation is determined to discuss the necessary conditions of the various states of the critical flow states, namely sub-critical stability, sub-critical instability, supercritical stability and supercritical explosion in the weakly nonlinear analysis. It is also showed that the necessary conditions of the threshold amplitude and the nonlinear wave speed.
    The main object of this paper is to study the effects of rotating parameter, rotation number, and size of circular disk on the stability of the film flow patterns. The chosen fluids are the Newtonian fluid, the micropolar fluid, the magnetic fluid and the film flow with condensation effects.
    The conclusions are summarized and drawn as following:
    (1)、The effects of rotation number and the radius of circular disk on the stability of the film flow patterns:
    In the hydrodynamic stability analysis, hence one can say that rotation number and the radius of circular disk give the same destabilizing effects for the thin flow patterns The reason for this phenomenon is the existence of the centrifugal force term, which is a radius-related force in the governing equation. Increasing the radius and the rotation number results in accelerated growth of the linear disturbance due to the centrifugal force.
    (2)、The effect of micropolar parameter K on the stability of a thin micropolar fluid: :
    The micropolar parameter K serves as the stabilizing factor for a thin micropolar fluid. The reason is that the part of the momentum is lost in rotating of the particles, so the vortex viscosity will lead to energy transfers between different waves and decay the amplitude of surface waves.
    (3)、The effect of Hartman number m on the stability of a thin magnetic fluid under the uniform magnetic field:
    Hartman number gives a stabilizing effect for a thin magnetic fluid under the uniform magnetic field. The reason for this phenomenon is the Lorentz forces can modify the velocity field and moderate the growth of the linear disturbance.
    (4)、The effect of condensation on the stability of a thin condensate flow :
    In comparison with the thin Newtonian fluid, a thin flow with condensation effects is more stable on the same operation condition. It is concluded condensation will stabilize the film flow.

    目 錄 摘要 I 英文摘要 III 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 符號 XVI 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 2 1-3 研究方法 4 1-4 論文架構 6 第二章 文獻回顧 9 2-1非線性流體動力穩定性理論 10 2-2旋轉圓盤薄膜流之穩定性分析相關文獻 13 第三章 薄膜牛頓流體在旋轉圓盤表面之弱非線性穩定性分析 14 3-1薄膜牛頓流體統御方程式 14 3-2薄膜牛頓流體自由面運動方程式 18 3-3薄膜牛頓流體之線性穩定性 21 3-4薄膜牛頓流體之弱非線性穩定性 22 第四章薄膜微極流體在旋轉圓盤表面之弱非線性穩定性分析 34 4-1薄膜微極流體統御方程式 34 4-2薄膜微極流體自由面運動方程式 39 4-3薄膜微極流體之線性穩定性 44 4-4薄膜微極流體之弱非線性穩定性 46 第五章 薄膜磁流體在旋轉圓盤表面之弱非線性穩定性分析 58 5-1薄膜磁流體統御方程式 58 5-2薄膜磁流體自由面運動方程式 63 5-3薄膜磁流體之線性穩定性 67 5-4薄膜磁流體之弱非線性穩定性 68 第六章 凝結薄膜流體在旋轉圓盤表面之弱非線性穩定性分析 81 6-1凝結薄膜流體統御方程式 81 6-2凝結薄膜流體自由面運動方程式 85 6-3凝結薄膜流體之線性穩定性 89 6-4凝結薄膜流體之弱非線性穩定性 91 第七章 結論與建議 102 7-1 結論 102 7-2 建議 103 參考文獻 105 附錄A:圓盤表面薄膜流自由面邊界條件之推導 112 A-1具相變化薄膜流之汽液界面邊界條件 112 A-2無相變化薄膜流之自由面邊界條件 115 附錄B:薄膜流體動力穩定性分析 117 B-1自由面運動方程式 117 B-2線性穩定性分析 118 B-3弱非線性穩定性分析 119 自述 127 歷年發表著作 128 表 目 錄 表B-1 Landau 方程式的特性表 125 圖 目 錄 圖1-1穩定性分析架構之流程圖 7 圖1-2論文架構之流程圖 8 圖3-1旋轉圓盤表面牛頓薄膜流體之物理示意圖(軸對稱) 26 圖3-3(a) 線性中立穩定曲線於不同Ro值下之變化情形;r=50 26 圖3-3(b) 線性中立穩定曲線於不同r值下之變化情形;Ro=0.1 27 圖3-3(c) 線性振幅增長率於不同Ro值下之變化情形;Re=90, r=50 27 圖3-3(d) 線性振幅增長率於不同Ro值下之變化情形; , r=50 28 圖3-3(e) 線性振幅增長率於不同r值下之變化情形;Re=6, Ro=0.1 28 圖3-3(f) 線性振幅增長率於不同r值下之變化情形; , Ro=0.1 29 圖3-4(a) 薄膜牛頓流體之非線性中立穩定曲線;Ro=0.1, r=50 ……….29 圖3-4(b) 薄膜牛頓流體之非線性中立穩定曲線;Ro=0.15, r=50 ……….30 圖3-4(c) 薄膜牛頓流體之非線性中立穩定曲線;Ro=0.1, r=100 ……….30 圖3-4(d) 不同Ro值下,亞臨界不穩定區中之臨界振幅值; Re=6, r=50….31 圖3-4(e) 不同r值下,亞臨界不穩定區中之臨界振幅值;Re=6, Ro=0.1….31 圖3-4(f) 不同Ro值下,超臨界穩定波之平衡振幅值;Re=6、r=50 ..….….32 圖3-4(g) 不同r值下,超臨界穩定波之平衡振幅值;Re=6, Ro=0.1 … .32 圖3-4(h) 不同Ro值下,超臨界穩定波之非線性波速值;Re=6, r=50…….33 圖3-4(i) 不同r值下,超臨界穩定波之非線性波速值;Re=6, Ro=0.1 .33 圖4-1旋轉圓盤表面薄膜微極流體之物理示意圖(軸對稱) 49 圖4-3(a) 線性中立穩定曲線於不同Ro值下之變化情形;r=50, K=20 49 圖4-3(b) 線性中立穩定曲線於不同r值下之變化情形;Ro=0.1, K=20 50 圖4-3(c) 線性中立穩定曲線於不同K值下之變化情形;Ro=0.1, r=50 50 圖4-3(d) 線性振幅增長率於不同Ro值下之變化情形;Re=9, r=50, K=20 51 圖4-3(e) 線性振幅增長率於不同Ro值下之變化情形; , r=50, K=20 51 圖4-3(f) 線性振幅增長率於不同r值下之變化情形;Re=9, Ro=0.1, K=20 52 圖4-3(g) 線性振幅增長率於不同r值下之變化情形; ,Ro=0.1, K=20 52 圖4-4(a) 薄膜微極流體之非線性中立穩定曲線;Ro=0.1,r=50, K=20…….53 圖4-4(b) 薄膜微極流體之非線性中立穩定曲線;Ro=0.1, r=50, K=25….53 圖4-4(c) 薄膜微極流體之非線性中立穩定曲線;Ro=0.15,r=50,K=20 .54 圖4-4(d) 薄膜微極流體之非線性中立穩定曲線;Ro=0.1,r=75,K=20 .54 圖4-4(e) 不同Ro值下,亞臨界不穩定區中之臨界振幅值; Re=6,r=50,K=20 55 圖4-4(f) 不同r值下,亞臨界不穩定區中之臨界振幅值;Re=6,Ro=0.1,K=20 55 圖4-4(g) 不同Ro值下,超臨界穩定波之平衡振幅值;Re=12,r=50,K=20 .56 圖4-4(h) 不同K值下,超臨界穩定波之平衡振幅值;Re=12,r=50,Ro=0.1 .56 圖4-4(i) 不同Ro值下,超臨界穩定波之非線性波速值;Re=12,r=50,K=20 57 圖4-4(j) 不同K值下,超臨界穩定波之非線性波速值;Re=12,r=50,Ro=0.1 .57 圖5-1旋轉圓盤表面薄膜磁流體之物理示意圖(軸對稱) 72 圖5-3(a) 線性中立穩定曲線於不同Ro值下之變化情形;r=10, m=0.1 72 圖5-3(b) 線性中立穩定曲線於不同r值下之變化情形;Ro=0.15,m=0.1 73 圖5-3(c) 線性中立穩定曲線於不同m值下之變化情形;Ro=0.15,r=10 73 圖5-3(d) 線性振幅增長率於不同Ro值下之變化情形;Re=9, r=10, m=0.1 74 圖5-3(e) 線性振幅增長率於不同Ro值下之變化情形; ,r=10,m=0.1 74 圖5-3(f) 線性振幅增長率於不同r值下之變化情形;Re=9, Ro=0.15, m=0.1 75 圖5-3(g) 線性振幅增長率於不同r值下之變化情形; ,Ro=0.15, m=0.1 75 圖5-4(a) 薄膜磁流體之非線性中立穩定曲線;Ro=0.15,r=10, m=0.1….76 圖5-4(b) 薄膜磁流體之非線性中立穩定曲線;Ro=0.15, r=10, m=0.05….76 圖5-4(c) 薄膜磁微極流體之非線性中立穩定曲線;Ro=0.175,r=10,m=0.1 77 圖5-4(d) 薄膜磁流體之非線性中立穩定曲線;Ro=0.15,r=15,m=0.1 .77 圖5-4(e) 不同Ro值下,亞臨界不穩定區中之臨界振幅值;Re=3,r=10, m=0.1 78 圖5-4(f) 不同r值下,亞臨界不穩定區中之臨界振幅值;Re=3,Ro=0.1,r=10 78 圖5-4(g) 不同Ro值下,超臨界穩定波之平衡振幅值;Re=6,r=10,m=0.1 .79 圖5-4(h) 不同m值下,超臨界穩定波之平衡振幅值;Re=6,r=10,Ro=0.1 .79 圖5-4(i) 不同Ro值下,超臨界穩定波之非線性波速值;Re=6,r=10,m=0.1 80 圖5-4(j) 不同m值下,超臨界穩定波之非線性波速值;Re=6,r=10,Ro=0.15 80 圖6-1旋轉圓盤表面薄膜凝結流體之物理示意圖(軸對稱) 94 圖6-3(a) 線性中立穩定曲線於不同Ro值下之變化情形;r=75 94 圖6-3(b) 線性中立穩定曲線於不同r值下之變化情形;Ro=0.1 95 圖6-3(c) 線性振幅增長率於不同Ro值下之變化情形;Re=9, r=75 95 圖6-3(d) 線性振幅增長率於不同Ro值下之變化情形; , r=75 96 圖6-3(e) 線性振幅增長率於不同r值下之變化情形;Re=9, Ro=0.1 96 圖6-3(f) 線性振幅增長率於不同r值下之變化情形; , Ro=0.1 97 圖6-4(a)薄膜凝結流體之非線性中立穩定曲線;Ro=0.1, r=75 ……….97 圖6-4(b) 薄膜凝結流體之非線性中立穩定曲線;Ro=0.15, r=75 ……….98 圖6-4(c) 薄膜凝結流體之非線性中立穩定曲線;Ro=0.1, r=125 ……….98 圖6-4(d) 不同Ro值下,亞臨界不穩定區中之臨界振幅值; Re=3, r=75….99 圖6-4(e) 不同r值下,亞臨界不穩定區中之臨界振幅值;Re=6, Ro=0.1….99 圖6-4(f) 不同Ro值下,超臨界穩定波之平衡振幅值;Re=9、r=100 .….…100 圖6-4(g) 不同r值下,超臨界穩定波之平衡振幅值;Re=9, Ro=0.1 … 100 圖6-4(h) 不同Ro值下,超臨界穩定波之非線性波速值;Re=9, r=100….101 圖6-4(i) 不同r值下,超臨界穩定波之非線性波速值;Re=9, Ro=0.1 101 圖A-1圓盤表面薄膜流之自由面參數示意圖..…....……………….…116 圖B-1以初始值 與時間為函數之振幅 之超臨界穩定 .126 圖B-2 以初始值 與時間為函數之振幅 之亞臨界不穩定示意圖 126

    Agrawal, S., “Spatially growing disturbances in a film,” Ph.D. thesis, PART 1, Clarkson College of Technology, 1972.
    Ahmadi, G., “Stability of a micropolar fluid layer heated from below,” Int. J. of Eng. Sci., Vol. 14, pp. 81-89 (1976).
    Anshus, B. E., “On the asymptotic solution to the falling film stability problem,” Ind. Eng. Chem. Fundam., Vol. 11, pp. 502-508 (1972).
    Atherton, R. W. and Homsy, G. M., “On the derivation of evolutin equations for interfacial waves,” Chem. Eng. Comm., Vol. 2, pp. 57-77 (1976).
    Attia H. A., “Unsteady MHD flow near a rotating porous disk with uniform suction or injection.” Fluid Dynamics Reseach, Vol. 23, pp. 283-290 (1998).
    Benney, D. J., “Long waves on liquid film,” J. of Mathematics and Physics, Vol. 45, pp. 150-155 (1966).
    Blenerhassett, P. J., “On the generation of waves by wind,” Philos. Trans. Roy. Soc. London Ser. A, Vol. 1441, pp. 43-48 (1980).
    Chandrasekhar, S., Hydrodynamic and hydromagnetic stability, Oxford University Press, Oxford (1961).
    Chen, C.I., Chen, C.K. and Yang, Y.T., “Perturbation analysis to the nonlinear stability characterization of thin condensate falling film on the outer surface of a rotating vertical cylinder” Int. J. Heat and Mass Transfer, Vol. 47, pp. 1937-1951 (2004).
    Chen, C.I., Chen, C.K. and Yang, Y.T., “Nonlinear-stability analysis of a thin Newtonian film flowing down an infinite vertical rotating cylinder”, Proc Instn Mech Engrs Part C: J Mechanical Engineering Science, Vol. 219, pp. 911-923 (2005).
    Chen,C.I., Chen C.K., and Yang, Y.T. “Non-linear stability characterization of the thin micropolar liquid flowing down the inner surface of a rotating vertical cylinder”, Comm. Non Sci. Num. Simu.,Vol. 12, pp, 760-775 (2007).
    Cheng, P. J., Chen, C. K. and Lai, H. Y., “Nonlinear stability analysis of the thin micropolar liquid film flowing down on a vertical cylinder,” ASME J. Fluids Eng., Vol. 123, pp. 411-421 (2001).
    Cheng, P.J. and Lai, H.Y., “Nonlinear stability analysis of thin film flow from a liquid jet impinging on a circular concentric disk”, J. of Mechanics, vol. 22, pp. 115-124(2006).
    Cheng, P.J. and Lin, T.W., “Surface waves on viscoelastic magnetic fluid film flow down a vertical column”, Int. J. of Eng. Sci., vol. 45, pp. 905-922(2007).
    Datta, A. B. and Sastry, V. U. K., “Thermal instability of a horizontal layer of micropolar fluid heated from below,” Int. J. of Eng. Sci., Vol. 14, pp. 631-637 (1976).
    Diprima, R. C. and Stuart, J. T., “The Eckhaus and Benjamin-Feir resonance mechanisms,” Proc. Roy. Soc. A, Vol. 362, pp. 27-41 (1978).
    Drazin, P. G. and Reid, W. H., “Hydrodynamic Stability,” Cambridge University Press, Cambridge (1984).
    Dressler, R. F., “Mathematical solution of the problem of roll-waves in inclined open channels,” Comm. Pure Appl. Math., Vol. 2, pp. 149-162 (1949)
    Emslie, A. G., Bonner, F. T. and Peck, L.G., “Flow of a viscous liquid on a rotating disk”, J. Appl. Phys. Vol. 29, pp. 858-862(1958).
    Eringen, A. C. “Simple microfluids,” Int. J. of Eng. Sci., Vol. 2, pp. 205-217 (1964).
    Eringen, A. C., “Theory of micropolar fluids,” J. of Mathematics and Mechanics, Vol. 16, pp. 1-18 (1967).
    Franchi, F. and Straughan, B., “Nonlinear stability for thermal convection in a micropolar fluid with temperature dependent viscosity,” Int. J. of Eng. Sci., Vol. 30, pp. 1349-1360 (1992).
    Ginzburg, V. L. and Landau, L. D., “Theory of superconductivity,” J. Exptl. Theoret. Phys. (USSR), Vol. 20, pp. 1064-1082 (1950).
    Gjevik, B., “Occurrence of finite amplitude surface wave of falling liquids films,” Phys. Fluids, Vol. 13, pp. 1918-1923 (1970).
    Herdrich, G. , Auweter-Kurtz, M., Fertig M., Nawaz A. and Petkow D. “MHD flow control for plasma technology applications”, Vacuum, Vol.80, pp.1167-1173 (2006).
    Higgins,B.G., “Film flow on a rotating disk”, Phys. Fluids, Vol. 29, pp. 3522-3529(1986).
    Hung, C. I., Tsai, J. S. and Chen, C. K., “Nonlinear stability of the thin micropolar liquid film flowing down on a vertical plate,” ASME J. of Fluids Eng, Vol. 118, pp. 498-505 (1996a).
    Hung, C. I., Chen, C. K. and Tsai, J. S., “Weakly nonlinear stability analysis of condensate film flow down a vertical cylinder,” Int. J. Heat and Mass Transfer, Vol. 39, pp. 2821-2829 (1996b).
    Jang J. and Lee S.S., “Theoretical and experimental study of MHD micropump”, Sensors and Actuators , Vol.80, pp. 84-89 (2000).
    Kapitza, P. L., “Wave flow of thin viscous liquid films,” Zh. Expeer. Teor. Fiz., Vol. 18, pp. 3-28 (1948).
    Kitamura, A., Hasegawa, E. and Yoshizawa M., “Asymptotic analysis of the formation of thin liquid film in spin coating”, Fluid Dynamics Research, Vol.30, pp. 107-125(2002).
    Krantz, W. B. and Goren, S. L., “Finite-amplitude, long waves on liquid films flowing down a plane,” Ind. Eng. Chem. Fundam., Vol. 9, pp. 107-113 (1972).
    Krishna, M. V. G. and Lin, S. P., “Nonlinear stability of a viscous film with respect to three-dimensional side-band disturbances,” Phys. Fluids, Vol. 20, pp. 1039-1044 (1977).
    Kuo, Y. K. and Chao, C. G., “Control ability of spin coating planarization of resist film and optimal of developers”, Microelectronics J., vol. 37, pp. 759-764(2006).
    Kuramoto, Y., “Diffusion induced chaos in reaction systems,” Progr. Theoret. Phys. Suppl., Vol. 64, pp. 346 (1978).
    Kuramoto, Y. and Koga, S., “Anomalous period-doubling bi-fucations leading to chemical turbulence,” Phys. Letter A, Vol. 92, pp. 1-6(1982).
    Landau, L. D., “On the problem of turbulence,” C.R. Acad. Sci., U.R.S.S., Vol. 44, pp. 311-314 (1944).
    Lai, H.Y., Sung, H.M. and Chen, C.K. “Nonlinear stability characterization of thin newtonian film flows traveling down on a vertical moving plate.”, Commun. Nonlinear Sci. Numer. Simul., Vol.10, pp.665–680(2005).
    Lin, C. C., The theory of hydrodynamic stability, Cambridge University Press, Cambridge (1955).
    Hwang, J. H. and Ma, F., “On the flow of a thin film over a rough rotating disk”, J. Appl. Phys., Vol. 66, pp.388-394 (1989).
    Mei, C. C., “Nonlinear Gravity waves in a thin sheet of viscous fluid,” J. Math. Phys. Vol. 45, pp. 266-281 (1966).
    Musslimani, Z. H., “Long-wave instability in optical parametric oscillators,” Physica A, Vol. 249, pp. 141-145 (1998).
    Nakaya, C., “Long waves on a thin fluid layer flowing down an inclined plane,” Phys. Fluids, Vol. 18, pp. 1407-1412 (1975).
    Nayfeh, A. H., Perturbation method, Wiley, New York, Chapter 6, pp. 228-309 (1973).
    Newell, A. C. and Whitehead, J. A., “Finite bandwidth, finite amplitude convection,” J. Fluid Mech., Vol. 38, pp. 279-303 (1969).
    Reynolds, O., “An experimental investigation of the circumstance which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Phil. Trans. Roy. Soc., Vol. 174, pp. 935-982 (1883).
    Rosenau, P. and Oron, A., “Evolution and breaking of liquid film flowing on a vertical cylinder,” Phys. Fluids A, Vol. 1, pp. 1763-1766 (1989).
    Rosensweig, R. E., Ferrohydrodynamics, Cambridge University Press, Cambridge (1985).
    Samanta A., “Stability of liquid film down a vertical non-uniformly heated wall“, Physica D: Nonlinear Phenomena, Vol. 237, pp.2587-2598(2008).
    Segel, L. A., “Distant side-walls cause slow amplitude modulation of cellular convection,” J. Fluid Mech., Vol. 38, pp. 203-204 (1969).
    Semaltianos, N. G., “Spin-coated PMMA films”, Microelectronics J., vol. 38, pp. 754-761(2007).
    Straughan, B., The energy method, stability, and nonlinear convection, Springer-Verlag, New York (1992).
    Stuart, J. T., “On the nonlinear mechanics of hydrodynamics stability theory,” J. Fluid Mech., Vol. 4, pp. 1-21 (1958).
    Takamasa, T. and Kobayashi, K., “Measuring interfacial waves on film flowing down tube inner wall using laser focus displacement meter,” Int. J. Multiphase Flow, Vol. 26, pp. 1493-1507 (2000).
    Tsai, J. S., Hung, C. I. and Chen, C. K., “Nonlinear hydromagnetic stability analysis of condensation film flow down a vertical wall,” Acta Mechanica, Vol. 118, pp. 197-212 (1996).
    Wang, M. W. and Chou, F. C., “Fingering instability and maximum radius at high rotational bond number”, J. of theElectrochemical Society, Vol. 148, pp. 283-290 (2001).
    Wasa, K., Kitabatake, M. and Adachi, H., Thin film materials technology: sputtering of compound materials, William Andrew Publishing., NY (2004).
    Yang, Y. K. and Chang, T. C., “Experimental analysis and optimization of a photo resist coating process for photolithography in wafer fabrication”, Microelectronics J., vol. 37, pp. 746-751(2006).
    Yih, C. S., “Stability of liquid flow down an inclined plane,” Phys. Fluids, Vol. 6, pp. 321-334 (1963).
    周復初,張昌霖,蕭博尹,”磁流體旋塗不穩定之研究”,,中國機械工程學會第12屆研討會, A2-014 , pp. 85-89(2005)。
    黃吉川,薄膜流的非線性液動穩定分析,國立成功大學機械工程研究所博士論文(1987)。
    蔡榮順,具磁場作用或懸浮微粒效應之薄膜流穩定性分析,國立成功大學機械工程研究所博士論文(1996)。
    鄭博仁,重力作用下之非牛頓流體薄膜流的非線性液動穩定性分析,國立成功大學機械工程研究所博士論文(2001)
    陳俊益,流體薄膜沿等速旋轉圓柱內外表面流下之非線性穩定性分析,國立成功大學 機械工程研究所博士論文(2003)。

    下載圖示 校內:立即公開
    校外:2009-11-10公開
    QR CODE