| 研究生: |
何誠圃 Ho, Cheng-Pu |
|---|---|
| 論文名稱: |
以絕熱捷徑理論達成最佳化之絕熱過程 Optimal Adiabatic Transition aided by Shortcuts to Adiabaticity |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 絕熱過程 、絕熱捷徑 、量子力學 |
| 外文關鍵詞: | adiabatic process, shortcuts to adiabaticity, quantum mechanics |
| 相關次數: | 點閱:162 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於研究最佳化絕熱過程之理論分析與數值模擬。首先,我們介紹二能階系統的絕熱過程之基本理論,在一般的設計中,因為絕熱過程受限於絕熱態之間的耦合,絕熱態無法完全對應系統態的演化,亦即在沒有絕熱捷徑的情況下,絕熱過程難以達到完全轉換,我們首先透過Lewis-Riesenfeld不變量算符逆向操縱法計算絕熱捷徑,此捷徑擁有完全的轉換效率,但會降低絕熱過程中對於參數誤差的穩定性。因此我們透過量子力學分析系統態對應絕熱態的分量,設計出最佳化的絕熱捷徑,並藉由實際模擬的結果,驗證了最佳化的絕熱過程會保有完全轉換效率和對於參數誤差的穩定性。
This thesis is devoted to the theoretical investigation and numerical simulations of an optimal adiabatic transition aided by shortcuts to adiabaticity (STA). We begin by introducing the theory of adiabatic transition in two-level systems. In general design, adiabatic states cannot correspond to system states evolution which is perturbed by the coupling of adiabatic states. In other words, adiabatic transition is hard to achieve complete population transfer without shortcut design. The Lewis-Riesenfeld invariant engineering protocol is introduced into adiabatic transition to calculate the STA. These shortcuts will lead to complete population transfer but lose the robustness which is the advantage of adiabatic transition. Hence we propose the optimal adiabatic transition designed by analyzing the fraction of system states projected on adiabatic states with quantum mechanics. The results from simulations support our theory very well. We show that the optimal adiabatic transition combines the advantage of complete population transfer and robustness.
1. B. Thomas, and G. Leuchs, Quantum information processing (John Wiley & Sons, 2006).
2. M. V. Berry, Histories of adiabatic quantum transitions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 429, 61-62 (1990).
3. E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117-169 (2013).
4. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013).
5. B. T. Torosov, G. Della Valle, and S. Longhi, Non-Hermitian shortcut to adiabaticity. Phys. Rev. A 87, 052502 (2013).
6. H. R. Lewis Jr, and W. B. Riesenfeld, An exact quantum theory of the time‐dependent harmonic oscillator and of a charged particle in a time‐dependent electromagnetic field. J. Math. Phys. 10, 1458-1473 (1969).
7. C. Gerry, and P. Knight, Introductory quantum optics (Cambridge university press, 2005).
8. L. Mandel, and E. Wolf, Optical coherence and quantum optics (Cambridge university press, 1995).
9. M. Born, and V. Fock, Beweis des adiabatensatzes. Zeitschrift für Phys. 51,165-180 (1928).
10. S.-Y. Tseng, and Y.-W. Jhang, Fast and robust beam coupling in a three waveguide directional coupler. IEEE Photon. Technol. Lett. 25, 2478-2481 (2013).
11. K.-H. Chien, C.-S. Yeih, and S.-Y. Tseng, Mode conversion/splitting in multimode waveguides based on invariant engineering. J. Lightwave Technol. 31, 3387-3394 (2013).
12. X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity. Opt. Express 22, 24169-24178 (2014).
校內:2020-08-03公開