簡易檢索 / 詳目顯示

研究生: 郭炯傑
KUO, CHIUNG-CHIEH
論文名稱: 鋼鐵冶煉製程底吹台上方固凝物形成之物理模型研究
Study of Accretion Formation near Gas Bottom-blowing Tuyere in Iron/Steel Making Processes by Physical Models
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 107
中文關鍵詞: 氣體回擊固凝物蠟模水模鋼鐵冶煉
外文關鍵詞: back attack, accretion
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在許多高溫鋼鐵冶煉製程中都運用底吹氣體攪拌,以增進反應速率與提高產能,但是氣體底吹會伴隨氣體回擊侵蝕底部耐火材以及底吹元件,造成成本增加及冶煉效率降低。由於底吹的常溫氣體對於鐵水冶煉溫度來說為相對低溫,因此在吹入爐中時有機會在爐底噴吹管處形成鐵相固凝物。此固凝物可保護爐底底吹管及其周圍之耐火材,因此經由製程操作條件來預知固凝物的型態及尺寸對於耐火材料的保護極為重要。

    由於實際鋼鐵冶煉過程所形成之固凝物不易觀察,因此本實驗建立具低溫氣體調控之水模及蠟模來研究高溫冶煉爐內固凝物生成型態,探討相同底吹管直徑6.25mm下,不同的液相性質、底吹氣體流量及液相過熱度對於固凝物的生成、型態及尺寸之影響,同時針對固凝物成長達穩態所需時間及成長速度作記錄。本研究之水模實驗過熱度設定為12-18℃,底吹氣體流量為60-150 Nl/min,底吹氣體溫度則為-150℃,利用熱傳及流動相似性進行換算可得,蠟模實驗之對應過熱度為67-87℃,底吹氣體之對應流量為30-90 Nl/min,底吹氣體溫度則為-110℃。

    由實驗結果可以觀察到水模及蠟模之固凝物皆是以單孔圓錐狀為主,氣體由中央之空心圓柱吹出。此外,由於固態蠟之熱傳導係數較差,造成蠟模之圓錐狀固凝物比較細長。本研究亦觀察到在固凝物可降低氣泡回擊之效應。在水模及蠟模固凝物達穩態尺寸觀察方面,隨著液相過熱度降低及底吹氣體流量上升,固凝物的尺寸會增加。在成長時間方面,實驗中也觀察到隨著液相過熱度降低及底吹氣體流量上升,固凝物成長速率與達穩態時間也上升。因此在探討固凝物成長速率、達穩態時間與固凝物的尺寸之關連可發現,固凝物達穩態時間與其成長速率成正比,達穩態後之高度則與其達穩態時間平方成正比。

    In pyrometallurgical processes, gas bottom-blown technique has been widely applied to agitate the liquid bath inside the vessel to enhance metallurgical efficiency via high mixing intensity. In general, the erosion of refractory lining near gas bottom-blown tuyere is severer than other area inside the vessel due to back attack of blown gas bubbles. One of the countermeasures to alleviate the erosion is to generate an iron accretion sitting on the refractory lining via appropriate bottom-blown conditions. The covering of the accretion can protect the refractory lining from being eroded by the back attack of gas bubbles. Therefore, how to generate accretion with proper size and shape is one important issue for high performance gas bottom- blown process.

    Due to high temperature operation, it is extremely difficult to visualize what is happening inside the pyrometallurgical vessels. Therefore, water and wax model were adopted to investigate the effects of gas bottom-blown condition on the shape and dimensions of solid accretion. In the water model, experiments were conducted with the flow rate of the bottom-blowing gas set in the range of 60~150 Nl/min, and the superheat set in the range of 12~18℃. The air temperature was controlled at -150±2℃ by flowing air through the pipe immersed in the liquid nitrogen bath. A similarity conversion was used for correlating the conditions of a water model and a wax model. After the conversion, the flow rate of the bottom-blowing gas was set in the range of 30~90 Nl/min, the superheat was set in the range of 20~40℃, and the air temperature was set at -110±2℃ in the wax model.

    In the water and wax model, the accretions were in cone shape of with a hollow channel for gas flowing through. It also shows that the shapes of wax accretions were taller and thinner than ice accretion. The back-attack of bottom-blowing gas can also be observed in the experiment. The final size of accretions of water model and wax model were proportional to the gas flow rate and inversely proportional to the liquid temperature. In addition, the growth time which is the duration from the wax accretion just formed until it reached a steady state, increases with gas flow rate and decreases with liquid temperature. It also shows the accretion growth rate increases with gas flow rate and decreases with liquid temperature. Therefore, the accretion growth rate and the growth time are both proportional to the final of sizes accretions. The results show that the final heights of accretions were direct proportional to growing velocity and square of growth time.

    中文摘要 i Abstract iii 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 高溫冶煉底吹氣體製程之簡介 2 1.2.1 傳統高爐煉鐵與直接熔融還原煉鐵法之比較 2 1.2.2 轉爐煉鋼 5 1.2.3 盛鋼桶精煉 7 1.3 氣體底吹製程之爐底侵蝕問題 8 1.3.1 底吹氣體元件 9 1.3.2 底吹氣體的選擇 10 1.4 研究目的與內容 11 1.5 文獻回顧 12 1.5.1氣泡回擊現象研究回顧 12 1.5.2 耐火磚侵蝕研究回顧 12 1.5.3 固凝物型態研究回顧 13 第二章 實驗原理 24 2.1 物理系統描述 24 2.2 物理模型的基本假設 24 2.3相似性之轉換 25 2.3.1 熱相似性轉換 25 2.3.2 流量相似性轉換 27 第三章 實驗方法與步驟 30 3.1實驗流程 30 3.2 實驗設備 30 3.2.1 水模及蠟模本體 30 3.2.2 水模及蠟模系統之周邊設備 31 3.3 實驗方法與步驟 32 3.3.1 熱物性質之搜尋及量測 32 3.3.2 水模及蠟模實驗之操作條件 35 3.3 實驗步驟 35 第四章 結果與討論 53 4.1 水模及蠟模之固凝物型態 53 4.2 氣泡回擊現象之觀察 54 4.3水模操作條件與固凝物達穩態尺寸之關係 56 4.3.1 水模固凝物達穩態尺寸與底吹氣體流量之關係 56 4.3.2 水模固凝物達穩態尺寸與液態溫度之關係 57 4.4 蠟模操作條件與固凝物達穩態尺寸之關係 57 4.4.1 蠟模固凝物達穩態尺寸與底吹氣體流量之關係 58 4.4.2 蠟模固凝物達穩態尺寸與液態溫度之關係 59 4.5固凝物達穩態時間、成長速率與尺寸之關係 60 4.5.1 操作條件與固凝物達穩態時間之關係 61 4.5.2 操作條件與固凝物成長速率之關係 61 4.5.3 固凝物達穩態尺寸與達穩態時間、成長速率之關係 62 第五章 結論 103 參考文獻 105 表目錄 表1-1 發展中熔融還原煉鐵製程之技術簡介 16 表3-1 各物質之熱物性質 38 表3-2 石蠟之黏滯係數 39 表3-3 實驗操作條件 40 表4-1 水模固凝物達穩態之實驗結果 63 表4-2 蠟模固凝物達穩態高度與底部直徑 64 表4-3 蠟液溫度67℃固凝物達穩態之實驗結果 65 表4-4 蠟液溫度77℃固凝物達穩態之實驗結果 66 表4-5 蠟液溫度87℃固凝物達穩態之實驗結果 67 圖目錄 圖1-1 熔融還原爐之反應機構 17 圖1-2 傳統高爐煉鐵製程與熔融還原煉鐵原製程之比較圖 18 圖1-3氧氣底吹轉爐之底結構示意圖 19 圖1-4 轉爐演進與優缺點 20 圖1-5 回擊現象與氣穴沖蝕過程示意圖 21 圖1-6 固凝物成長過程之物理模型 22 圖1-7水模氣體底吹時間與產生的冰帽重量關係圖 23 圖2-1 物理模型相似性轉換系統圖 29 圖3-1 水模示意圖 41 圖3-2 水模整體外觀圖 42 圖3-3 水模爐體外觀 43 圖3-4 蠟模試驗系統設備示意圖 44 圖3-5 蠟模本體示意圖(上)與蠟模本體外觀(下) 45 圖3-6 流量顯示器 46 圖3-7 壓力控制器、除水裝置 47 圖3-8 熱交換器 48 圖3-9 溫度記錄器正面(上)與背面熱電偶接線處(下) 49 圖3-10 DSC熱分析儀 50 圖3-11 圓柱圖 51 圖3-12 實驗流程圖 52 圖4-1 水模之圓錐狀固凝物與示意圖 68 圖4-2 蠟模之圓錐狀固凝物與示意圖 69 圖4-3 蠟模不規則狀固凝物 70 圖4-4 蠟模多孔狀固凝物 71 圖4-5 蠟模分枝狀固凝物 72 圖4-6 水模溫度18℃底吹氣體流量150Nl/min歷時0.23秒之氣泡回擊連續圖 73 圖4-7 蠟液溫度87℃底吹氣體流量50Nl/min歷時0.33秒內之氣泡回擊連續圖 74 圖4-8 底吹氣體流量60、90、120、150 Nl/min在水溫12℃下穩態固凝物之形態 75 圖4-9 底吹氣體流量60、90、120、150 Nl/min在水溫18℃下穩態固凝物之形態 76 圖4-10 底吹氣體流量60、90、120、150 Nl/min在水溫24℃下穩態固凝物之形態 77 圖4-11 固凝物體積示意圖 78 圖4-12 水模氣體流量與固凝物達穩態體積之關係圖 79 圖4-13 水模水溫與固凝物達穩態高度之關係圖 80 圖4-14 水模水溫與固凝物達穩態底部直徑之關係圖 81 圖4-15 水模水溫與固凝物達穩態體積之關係圖 82 圖4-16 水模水溫與固凝物達穩態高度直徑比之關係圖 83 圖4-17 蠟液溫度67℃底吹氣體流量30Nl/min穩態固凝物圖 84 圖4-18 底吹氣體流量30、50、70、90 Nl/min在蠟液溫度67℃下穩態固凝物之形態 85 圖4-19 底吹氣體流量30、50、70、90 Nl/min在蠟液溫度77℃下穩態固凝物之形態 86 圖4-20 底吹氣體流量30、50、70、90 Nl/min在蠟液溫度87℃下穩態固凝物之形態 87 圖4-21 蠟模氣體流量與固凝物達穩態體積之關係圖 88 圖4-22 蠟液氣體流量與固凝物達穩態高度半徑比之關係圖 89 圖4-23 蠟液溫度與固凝物達穩態高度之關係圖 90 圖4-24 蠟液溫度與固凝物達穩態底部直徑之關係圖 91 圖4-25 蠟液溫度與固凝物達穩態體積之關係圖 92 圖4-26 蠟液溫度與固凝物達穩態高度直徑比之關係圖 93 圖4-27 相同相似性條件下,水模與蠟模固凝物達穩態高度之比較圖 94 圖4-28 相同相似性條件下,水模與蠟模固凝物達穩態底部直徑之比較圖 95 圖4-29 相同相似性條件下,水模與蠟模固凝物達穩態高度直徑比之比較圖 96 圖4-30 蠟液溫度與固凝物達穩態時間之關係 97 圖4-31 蠟模溫度67℃底吹氣體流量 30 Nl/min成長過程 98 圖4-32 蠟模67℃固凝物高度隨時間成長趨勢圖 99 圖4-33 蠟液溫度與固凝物成長速率之關係 100 圖4-34 蠟模固凝物達穩態時間與成長速率之關係圖 101 圖4-35 蠟模固凝物達穩態時間與穩態高度之關係圖 102

    1.鄭佩菁, “熔融材料製程中兩相流之流場解析研究”, 國立成功大學碩士論文, 2002年6月.
    2.中鋼新煉鐵製程讀書會資料, 中國鋼鐵公司, 1987年6月.
    3.陳家祥編撰, “鋼鐵冶金學”, 冶金工業出版社, 1995年.
    4.T. Aoki, S. Masuda, A. Hatono and M. Taga, “Proceedings International Conference on Injection Phenomena Extraction and Refining”, Vol. 1, Department of Metal and Engineering Materials, University of Newcastle upon Tyne, 1982.
    5.Q. X. Yang, H. Gustavsson and E. Burströmm, “Erosion of Refractory During Gas Injection – A Cavitation Based Model”, Scandinavian Journal of Metallurgy, Vol. 19, 1990, p127-136.
    6.T. Aoki, “Elimination of the Back-Attack Phenomenon on a Bottom Blowing Tuyere Investigated in Model Experiments”, 鐵と鋼, Vol. 76, 1990, p240-246.
    7.M. Iguchi, O. J. Ilegbusi, H. Ueda, T. Kuranga, and Z. I. Morita, “Water Model Experiment on the Liquid Flow Behavior in a Bottom Blown Bath with Top Layer”, Metallurgical and Materials Transactions B, Vol. 27B, 1996, p35-41.
    8.D. Mazumdar and R. I. L. Guthrie, “Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations”, Metallurgicall Transations, Vol. 16, 1985, p83-90.
    9.J. H. Wei, J. C. Ma, Y. Y. Fan, N. W. Yu, S. L. Yang and S. H. Xiang, “Back-attack Phenomena of Gas Jets with Submerged Horizontally Blowing and Effect on Erosion and Wear of Refractory Lining”, ISIJ International, Vol. 39, 1999, p779-786 .
    10.蔣承學, “底吹條件對熔融還原爐爐內鐵相混合及耐火材沖蝕影響之水模研究”, 義守大學碩士論文, 2004年.
    11.J. L. Liow and N. B. Gray, “Slopping Resulting From Gas Injection in a Peirce-Smith Converter: Water Modeling”, Metallurgical Transaction B,Vol. 27, 1990, p987-996.
    12.M. S. Plesset and A. Prosperetti, “Bubble Dynamics and Cavitation”, Annual Review Fluid Mechanics, Vol. 9, 1977, p145-185.
    13.J. K. Brimacombe, S. E. Meredith and R. G. H. Lee, “High Pressure Injection of Air into a Peirce-Smith Copper Converter”, Metallurgical Transaction B, Vol. 16, 1984, p243-250.
    14.N. A. Molloy, T. Evans, P. Tapp, J. Lucas and M. Lee, “Tuyere Geometry Effects on Flow Performance”, The Howard Worner International Symposium on Injection in Pyrometallurgy Edited by M. Nilmani and T. Lehner. The Minerals, Metals and Materials Society, 1996, p237-249.
    15.H. Iso , Y. Jyono, K. Arima, M. Kanemoto, M. Okajima, H. Narita. “Development of Bottom-blowing Nozzle for Combined Blowing Converter”, Transactions of ISIJ, Vol. 28, 1988, p49-58 .
    16.M. B. Lesser and J. E. Field, “Erosion by Liquid and Solid Impact”, Proceeding of Sixth International Conference, 1983, p5-8.
    17.J. H. Grevet, J. Szekely and N. Elkaddah, “An Experimental and Theoretical Study of Gas Bubble Driven Circulation Systems”, International Journal of Heat and Mass Transfer, Vol. 25, No. 4, 1982, p487-497.
    18.蘇朝正,“底吹條件對熔融還原爐爐底耐火材沖蝕及鐵/渣混合影響之水模研究”, 義守大學碩士論文, 2003年.
    19.C. Xu, Y. Sahai, and R. I. L. Guthrie, “Formation of Thermal Accertion in Submerged Gas Injection Processes”, Ironmaking and Steelmaking, 1984, Vol. 11, No. 2, p101-107 .
    20.A. K. Kyllo and G. G. Richards, “Accretion Formation in Gas Injection”, The Howard Worner International Symposium on Injection in Pyrometallurgy Edited by M. Nilmani and T. Lehner. The Minerals, Metals and Materials Society, 1996, p149-161 .
    21.R. I. L. Guthrie, H. C. Lee, Y. Sahai, “On the Formation of Thermal in Steelmaking Vessels”, Proceedings of the Savard/Lee International Symposium on Bath Smelting Edited by J. K. Brimacombe, P. J. Mackey, G. J. Kor, C. Bickert and M. G. Ranade. The Minerals, Metals and Materials Society, 1992, p445-462 .
    22.黃昱斌, “直接熔融還原煉鐵製程底吹台上方固凝物形成之水模研究”, 國立成功大學碩士論文, 2001年6月.
    23.陳建任等作, “2004鋼鐵年鑑”, 金屬工業研究發展中心, 2004年.
    24.http://ezphysics.nchu.edu.tw/physiweb/index1.htm中興大學物理系

    下載圖示 校內:立即公開
    校外:2007-07-27公開
    QR CODE