簡易檢索 / 詳目顯示

研究生: 林育宏
Lin, Yu-Hong
論文名稱: 牽引力於表面張力自組裝之影響
Relation between Guide Force and Self-Assembly by Surface Tension
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 流體自我組裝親疏水性接觸角表面張力
外文關鍵詞: Fluidic Self-Assembly, Hydrophobic, Contact angle, Surface Tension
相關次數: 點閱:127下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體技術的不斷進步與電子產品的微小化趨勢下,傳統的機械方式取放元件(Pick and Place)已不敷使用,為克服元件微小化所產生夾持與定位及生產成本等問題,流體自我組裝FSA (Fluidic Self-Assembly)的應用愈來愈廣泛。大多數的研究是將元件沉浸在流體中,以重力作用或流體流動,觀察元件組裝情形。另有一部份則研究疏水性元件浮於液面上,在無人為外力作用下,利用液體表面張力之自我組裝現象。本研究則針對此表面張力所產生的自我組裝現象進行實驗,以3mm X 3mm、2mm X 4.5 mm及1mm X 9 mm之相同截面積之矽晶片,使用OTS (Octadecyltrichiorosilane)改質成疏水性表面,放置於液面上並固定起始距離為20mm時,輔以不同疏水性之圓棒施加牽引力,探討相同截面積之矽晶片與不同疏水性圓棒的牽引力下的自我組裝現象,並以不同的速度驅動疏水棒,以及不同的行進距離進行實驗,由此實驗結果,希望能找出流體表面自組裝之最佳機制。而實驗結果發現,對欲產生自組裝之元件施以導引力加速其自組裝之完成是可行之方式。

    With the advances in semiconductor technology and the miniaturization of electronic products, the conventional method of Pick and Place is becoming inadequate to meet the production cost and clamping/ positioning problems due to component miniaturization. Thus, more and more approaches of Fluidic Self-Assembly (FSA) are developed. Most of the researches are about components immersed in fluid, and using gravity and fluid flow for assembly. And few of those researches are about the Self-Assembly (SA) without external force, which use hydrophobic components floating on the fluid surface by surface tension. In this study, the phenomenon of Self-Assembly of hydrophobic components floating on fluid surface by surface tension was investigated. Both 3mm x 3mm, 2mm x 4.5mm, and 1mm x 9mm silicon chips of the same area were used; their hydrophobic surfaces were treated by OTS (Octadecyltrichioroslane) surface modification. With an initial distance of 20mm between the components on the fluid surface, a driving force made by different cylinders with different hydrophobic properties was also provided. The SA with the same area but with different driving force, driving speed, moving distance was conducted with the hope of finding the best method of FSA.
    .
    Key words: Fluidic Self-Assembly, Hydrophobic, Contact Angle, Surface Tension

    中文摘要…..........................................................................................................Ι Extended Abstract...............................................................................................II 致謝...................................................................................................................VI 目錄..................................................................................................................VII 表目錄................................................................................................................X 圖目錄...............................................................................................................XI 第一章 緒論......................................................................................................1 1-1 前言.......................................................................................................1 1-2 流體自組裝概要...................................................................................2 1-2-1 對微小元件的影響....................................................................3 1-2-2 流體自組裝的優點....................................................................3 1-2-3 流體自組裝流程….....................................................................4 1-3 研究動機...............................................................................................5 第二章 文獻回顧............................................................................................11 2-1 自組裝驅動模式.................................................................................11 2-1-1 表面張力..................................................................................12 2-1-2重力與流體剪切力…..............................................................12 2-1-3 介面毛細力……........................................................................13 2-1-4 靜電力……................................................................................14 2-1-5 磁力……....................................................................................14 2-1-6 形狀互補效應….......................................................................14 第三章 實驗設備與方法................................................................................25 3-1 實驗設備.............................................................................................25 3-1-1實驗液槽...................................................................................25 3-1-2數位攝影機...............................................................................26 3-1-3接觸角量測儀...........................................................................26 3-1-4晶圓切割機...............................................................................26 3-1-5直流馬達自動控制...................................................................26 3-1-6研磨器、標準分析篩...............................................................27 3-1-7超疏水導引棒製作壓模...........................................................27 3-1-8超音波洗淨機………………..........................................................27 3-2 實驗材料.............................................................................................28 3-2-1矽晶圓元件製作.......................................................................28 3-2-2導引棒.......................................................................................28 3-2-3疏水性材料OTS (Octadecyltrichiorosilane)溶液……..............29 3-2-4 疏水性元件製作......................................................................29 3-3 疏水性元件於液面之起始間距對自組裝的影響............................29 3-4 疏水性元件長寬比之差異對自組裝的影響....................................30 3-5 元件於液面接觸面的疏水性對自組裝的影響..................................30 3-6 導引棒之疏水性比較.........................................................................31 3-7 施加不同速度之牽引力對自組裝之影響..........................................32 3-8 導引棒行進距離之差異對自組裝之影響..........................................33 第四章 結果與討論........................................................................................42 4-1 疏水性元件於液面之起始間距對自組裝的影響..............................42 4-2 疏水性元件長寬比之差異對自組裝的影響......................................43 4-3 元件於液面接觸面的疏水性對自組裝的影響..................................44 4-4 導引棒之疏水性比較對於液面自組裝的影響..................................45 4-5 施加不同速度之牽引力對於液面自組裝的影響..............................48 4-6 導引棒行進距離之差異對於液面自組裝的影響..............................50 第五章 結論與建議........................................................................................80 參考文獻..........................................................................................................82

    [1] D.FITTES, "Using Multicore Processors in Embedded System", ESD, pp. 37-39, Oct, 2009
    [2] G.M. Whitesides and B. Grzybowski, "Self-Assembly at All Scales", Science, vol. 295, pp. 2418-2421, 2002
    [3] H.R. Marsden and A. Kros, "Self-Assembly of Coiled Coils in Synthetic Boilogy: Inspiration and Progress", Angewandte Chemie, vol. 49, pp. 2988-3005, 2010
    [4] H.O.Jacobs, A.R. Tao, A. Schwartz, D.H. Gracias and G.M. Whitesides, "Fabrication of a Cylindrical Display by Patterned Assembly", Science, vol. 296, pp. 323-325, 2002
    [5] T.L. Breen, J. Tien, S.R.J. Oliver, T. Hadzic and G.M. Whitesides, "Design and Self-Assembly of Open, Regular, 3D Mesostructures", Science, vol. 284, pp. 948-951, May 1999
    [6] J.S. Smith, "High density, Low Parasitic Direct Integration by Fludic Self-Assembly (FSA), "Electron Devices Meeting, IEDM Technical Digest. International 10-13, pp. 201-204, Dec. 2000
    [7] T. Kato, "Self-Assembly of Phase-Segregated Liquid Crystal Structures", Science, vol. 295, pp. 2414-2418, Mar. 2002
    [8] D. Chowdhury, R. Maoz and J. Sagiv, "Wetting Driven Self-Assembly as a New Approach to Template-Guide Fabrication of Metal Nanopatterns", NANO LETTERS, vol. 7, pp. 1770-1778, 2007
    [9] A.K. Verma, M.A. Hadley, H.J. Yeh, and J.S. Smith, "Fluidic Self-Assembly of Silicon Microstructures, "IEEE, pp. 1263-1268, 1995
    [10] R.S. Fearing, "Survey of Sticking Effects for Micro Parts Handling" in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pittsburg, PA, pp. 212-217, 1995
    [11] K. Han, S.H. Lee, W. Moon, J.S. Park, and C.W. Moon, "Design and Fabrication of the Micro-Gripper for Manipulating the Cell, " Integrated Ferroelectrics, vol. 89, pp. 77-86, 2007
    [12] M. Moll, K. Goldberg, M.A. Erdmann, and R. Fearing, "Aligning Parts for Micro Assemblies, "Assembly Automation, vol. 22, pp. 46-54, 2002
    [13] U. Srinivasan, D. Liepmann, and R.T. Howe, "Microstructure to Sbustrate Self-Assembly Using Capillary Forces, " IEEE Journal of Microelectro Mechanical System, vol. 10, No. 1, pp. 17-24, Mar. 2001
    [14] H. Hickey, "Contact Lenses with Circuits, Lights a Possible Platform for Superhuman Vision, "University of Washington News, 17, Jan. 2008
    [15] Alien Technology Corporation White Paper "Fluidic Self-Assembly" Oct. 1999
    [16] Alien Technology Corporation White Paper on RFID
    [17] Eric J. Snyder, Alien Technology Corporation, Moragn Hill, CA USA, "Fluidic Self-Assembly of Semiconductor Devices: A Promising New Metho of Mass Producing flexible Cricuitry, "Microprocesses and Nanotechnology Conference, International 31, pp.256-257, Oct. 2001
    [18] M. Boncheva, D.A. Bruzewicz, and G.M. Whitesides, "Millimeter-Scale-Self-Assembly and it's application", Pure Application Chemistry, vol. 75, No.5, pp. 621-630, 2003
    [19] T. L. Breen, J. Tien, S. R. J. Oliver. T. Hazic, and G. G. Whitesides, "Design and Self-Assembly of open, regular, 3D mesostructures", Science, vol. 284, pp. 948-951, 1999
    [20] M. B. Cohn, "Assembly Techniques for Microelectromechanical System", PhD. dissertation, Univ. of California at Berkeley, 1997
    [21] K. F. Bohringer, K. Goldberg, M. Cohn, R. T. Howe, and A. P. Pisano, "Parallel Microassembly with Electrostatic Force Fields", in Proc. SPIE Micromaching and Microfabrication, Santa Clara, CA, Sept. 20-22, 1998
    [22] C.G. Fonstad, "Magnetically-Assisted Statistical Assembly a New Heterogeneous Integration Technique", Singapore -MIT Alliance Symposium in January 2002
    [23] B. Vikramaditya1, B. J. Nelson1, G. E. Yang1, and E. T. Enikov, "Micro-Assembly of Hybrid Magnetic MEMS", Journal of Microelectromechanical Systems, Vol.1, No.2, pp. 99-116, 2001
    [24] H. J. Yeh and J. S. Smith, "Fluidic Self-Assembly for The Integration of GaAs Light-Emitting Diodes on Si Substrates, " IEEE Photonics Technology Letters, vol. 6, No. 6, pp. 706-708, Jun. 1994
    [25] J. J. Talghader, J. K. Tu, and J. S. Smith, "Integration of Fluidically Self-Assembled Optoelectronic Devices Using a Silicon-Based Process", IEEE Photonics Technology Letters, vol. 7, No. 11, pp. 1321-1323, 1995
    [26] S. A. Stauth and B. A. Parviz, "Self-Assembled Single-Crystal Silicon Circuits on Plastic", Proceedings of The National Academy of Sciences of the United States of America, vol. 103, issue 38, pp. 13922-13927, Sep. 2006
    [27] Y. T Lin and J. H Chou, A facile low-temperature and low-cost process for fabricating super-hydrophobic surface on acrylic, Journal OF Materials Science, 50 6624-6630 (2015)
    [28] S.A. Mirji, "Adsorption of Octadecyltrichlorosilane on Si(100)/ SiO₂ and SBA-15", Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 289, pp. 133-140, 2006
    [29] 許嘉良, "流體自組裝技術微控機制之研究", 國立清華大學微機電系統工程系碩士班碩士論文, 2005年7月
    [30] 李岱芬, "微小疏水性二氧化矽元件流體自我組裝之機制", 國立成功大學工程科學系碩士班碩士論文, 2005年7月
    [31] 徐榮傑, "表面張力自我組裝", 國立成功大學工程科學系碩士在職專班論文, 2010年7月

    下載圖示 校內:立即公開
    校外:2018-02-03公開
    QR CODE