簡易檢索 / 詳目顯示

研究生: 孫維欣
Sun, Wen-Shin
論文名稱: Fe2VGa摻雜鈮Nb之熱電性質研究
Study of Nb substitution on the thermoelectric properties of Fe2VGa
指導教授: 呂欽山
Lue, Chin-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 56
中文關鍵詞: 熱電
外文關鍵詞: Fe2VGa
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在許多Heusler-type化合物的研究中,Fe2VAl和Fe2VGa因具有窄能隙半導體的特性且費米能階EF又位於贗能隙(pseudogap)中,而被歸類為半金屬(semimetal)。西元1996年 Mahan和Sofo在一篇論文1提及到,半金屬性化合物是很好的熱電研究對象。本篇論文即研究以過渡金屬鈮Nb摻雜Fe2VGa形成Fe2V1-xNbxGa合金。在10到300K溫度範圍內量測其電阻率 (ρ)、熱傳導率 (κ)、熱電係數 (S)以及熱電優值 (ZT)。
    結果顯示,摻雜Nb於Fe2VGa中導致晶格與聲子間的無序散射增加,進而使樣品熱傳導率有效地下降;且此替代結果也使EF位於贗能隙中的能帶重疊(band overlap)增加,顯著地提升熱電係數及有效地降低電阻率,並且在摻雜量x>0時電阻率由半導體特性轉變成半金屬特性。特別是摻雜量x=0.063時,Fe2V0.937Nb0.063Ga在溫度180K時熱電係數的成長幅度達到最大。最後由實驗結果可知,用來判斷熱電性質優劣的ZT值在Nb摻雜下有大幅地提升。

    Abstract
    Fe2VAl and Fe2VGa has attracted much interests because electronic structure calculations and NMR study indicated that their should be a nonmagnetic semimetal with a pseudogap in the density of state(DOS) at the Fermi level. As proposed by Mahan and Sofo, in 1911, materials with a sharp DOS feature around EF would be good candidates for thermoelectric applications. We report the effects of partial substitution of Nb onto the V sites of Fe2VGa by measuring electrical resistivity, thermal conductivity, and seebeck coefficient as a function of temperature.
    It is found that Nb substitution effectively enhance electronic mobility by enlarging band overlap with doped level and thus causes a dramatic decrease in the electrical resistivity. The magnitude of the Seebeck coefficient gradually increases and attains a maximum value of 85 μVK^(-1) at around 180K for Fe2V0.937Nb0.063Ga. The thermal conductivity is also reduced and a detailed analysis based on the Debye approximation indicates that the extrinsic disorder introduced by Nb substitution in Fe2VGa has a main contribution to the point defect scattering. While the thermoelectric performance improves with the partial substitution of Nb, the largest figure-of-merit(ZT) value among these presently investigated alloys still an order of magnitude than the conventional thermoelectric materials.

    目錄 Abstract 6 摘要 7 第一章 前言 8 1-1 Fe2VAl與Fe2VGa 簡介 1-2研究目的 第二章 基礎理論 11 2-1 電傳導率 (Electrical conductivity) 2-1.1電子的碰撞機制 2-2 熱傳導率 (Thermal conductivity) 2-2.1電子對熱傳導率的影響 2-2.2聲子對熱傳導率的影響 2-3 熱電熱應 (Thermoelectric effects) 2-3.1 Seebeck效應 2-3.2 Peltier效應 2-3.3 Thomson效應 2-4熱電優值ZT (Figure of merit) 第三章 樣品製備與量測方法 30 3-1 樣品的製備過程 3-1.1 Arc-melting運作原理 3-1.2 X-ray繞射分析 3-2 物性參數的量測 3-2.1 電阻率的量測 3-2.2 熱傳導率的量測 3-2.3 Seebeck 係數的量測 第四章 實驗結果與討論 37 4-1電阻率特性分析 4-2熱傳導率特性分析 4-3熱電勢特性分析 4-4 熱電優值特性分析 第五章 結論 53 第六章 參考文獻 55

    1. G. D. Mahan and J. O. Sofo, Proc. Natl Acad. Sci. USA, Applied Physical Sciences, Vol. 93 p.7436-7439 (1996)
    2. C. S. Lue, W. J. Lai, C. C. Chen and Y. K. Kuo, J. Phys.: Condens. Matter 16 (2004)
    3. C. S. Lue, Joseph H. Ross Jr., K. D. D. Rathnayaka, D. G. Naugle, S. Y. Wu and W. H. Li, J. Phys.: Condens. Matter 13 (2001)
    4. C. S. Lue and Joseph H. Ross Jr., Phys. Rev. B 63, 054420 (2001)
    5. C. Kittel , Introduction to Solid State Physics, 7th edited(1996)CH4、5、6
    6. I. Galanakis and Dederichs Phys. Rev. B 66,174429 (1998)
    7. D. M. Rowe, CRC Handbook of thermoelectric, (CRC Press, Florida, p.1-131, 1995)
    8. N. F. Mott and H. Jones, The Theory of the Properties of Metals (Clarendon Press, Oxfored, 1936)
    9. H. J. Goldsmid, Electronic Refigeration, (Polin, London, 1986)
    10. K. Soda, H. Murayama, K. Shimba, S. Yagi, J. Yuhara, T. Takeuchi, U. Mizutani, H. Sumi, M. Kato, H. Kato, Y. Nishino, A. Sekiyama and S. Suga, T. Matsushita, and Y. Saitoh, Phys. Rev. B 71,245112 (2005)
    11. Altenkirch, E., Physikalische Zeitschrift, 12, p. 920-924 (1911)
    12. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London (1957)
    13. B. D. Cullity and S. R. Stock, Elements of X-Rays diffraction 3rd edition (2001)
    14. J. Goraus, A. Slebarski, Materials Science-Poland, Vol. 25, No. 2 (2007)
    15. J. Callaway, Phys. Rev. 113,1046 (1959)
    16. J. Callaway and H.C. von Baeyer, Phys. Rev. 120, 1149 (1960)
    17. C. S. Lue, H. D. Yang and Y. K. Kuo, Chinese Journal of Physics, 43, 775 (2005)
    18. P. G. Klemens, Proc. Phys. Soc. A 68 1113 (1955)
    19. A. Bansil, S. Kaprzyk, P. E. Mijnarends, and J. Tobola, Phys. Rev. B 60, 13396 (1999)
    20. S. Fujii, Y. Ienaga, S. Ishida and S. Asano, J. Phys. Soc. Japan. 72, 698 (2003)
    21. C. S. Lue, J. W. Huang, D. S. Tsai, K. M. Sivakumar and Y. K. Kuo, J. Phys.: Condens, Matter 20, 255133 (2008)
    22. Andrzej Slebarski and Jerzy Goraus, Phys. Rev. B 80, 235121 (2009)
    23. D. J. Singh and I. I. Mazin, Phys Rev. B 57, 14352 (1998)
    24. C. S. Lue and Joseph H. Ross Jr., Phys. Rev. B 58, 9763 (1998)
    25. C. S. Lue and Joseph H. Ross Jr., Phys. Rev. B 61, 9863 (2000)
    26. C. S. Lue and Joseph H. Ross Jr., Phys. Rev. B 60 (1999)
    27. G. A. Botton, Y. Nishino, C. J. Humphreys, Intermetallics. 8, 1209-1214 (2004)
    28. C. S. Lue and Y. K. Kuo, Phys. Rev. B 66, 085121 (2002)
    29. C. S. Lue and C. F. Chen, J. Y. Lin, Y. T. Yu and Y. K. Kuo, Phys. Rev. B 75, 064204 (2007)

    下載圖示
    校外:立即公開
    QR CODE