簡易檢索 / 詳目顯示

研究生: 黃德荃
Huang, Te-Chuan
論文名稱: 在STAR實驗中,質子質子對撞中J/psi粒子的產生與未來的探測器升級計劃
The production of J/psi meson in proton-proton collisions and future detector upgrades in the STAR experiment
指導教授: 楊毅
Yang, Yi
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 160
中文關鍵詞: STARMTDQuarkoniumJ/psiMuonic atomForward Silicon Tracker
外文關鍵詞: STAR, MTD, Quarkonium, J/psi, Muonic atom, Forward Silicon Tracker
相關次數: 點閱:166下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在重離子對撞中產生的夸克偶素態是研究夸克膠子電漿態重要的 探針。在我們對夸克偶素在重離子對撞中生產抑制的結果做出闡釋之 前,我們必須對夸克偶素態的生產機制要有很好的了解。在這個領域, 有不少描述夸克偶素態的生產機制的理論模型,像是:Color Singlet Model、可以包含 Color Octet Mechanism 的非相對論性量子色動力學(NRQCD)、以及基於 NRQCD 框架使用 Color Glass Condensate 的描述 等等。對夸克偶素態的譜在不同橫向動量下的精準量測,能幫助我們 測試模型,對夸克偶素的生產機制有更深入的了解。重離子對撞的特 殊環境也可能提供生產一些自然界中不常見的粒子狀態的機會,像是 渺子原子。
    STAR 實驗是現今還在運行的重離子對撞實驗之一,它提供在空 間中很大的探測器覆蓋率,使我們可以研究 mid-rapidity 的夸克偶素 的生產,以及尋找渺子原子的環境。另外,為了增加 STAR 探測器 在 forward-rapidity 的探測能力,STAR 也將進行升級,稱之為 STAR Forward Upgrade 計畫。

    Quarkonium states produced in heavy-ion collisions serve as essential probes in studying the Quark-Gluon Plasma. It requires a good understanding of quarkonium production mechanism in p+p collisions when interpreting the observed quarkonium suppression in heavy-ion collisions. There are several popular models on the market for describing quarkonium production, such as the Color Singlet Model, the Color Evaporation Model, the nonrelativistic QCD (NRQCD) formalism including also the Color Octet Mechanism, and the Color Glass Condensate implemented with the NRQCD formalism. Precision measurements of quarkonium spectrum from low to high transverse momentum can provide important tests of the models and better understanding of the quarkonium production mechanism in p+p collisions. The unique environment in heavy-ion collisions may also provide the possibility to produce particle states that are not usually seen in nature such as the muonic atom.
    STAR is one of the running heavy-ion experiments in the world and provides a large acceptance coverage to study quarkonium production at mid- rapidity, and serve as a good detector for searching the muonic atom. To extend the coverage of particle detection, STAR experiment is also planning to upgrade its detectors, called the STAR Forward Upgrade Project.

    Abstract in Chinese i Abstract in English ii Acknowledgements iii Contents v List of Tables ix List of Figures xi 1 Introduction 1 2 Theory Reviews 3 2.1 The Standard Model of particle physics 3 2.2 Quarkonium states and the their production mechanism 6 2.3 Quantum Chromodynamics and Quark-gluon Plasma 11 3 Experimental Setup 14 3.1 Relativistic Heavy Ion Collider 14 3.2 The STAR detector 15 3.3 Magnet System 16 3.4 Time Projection Chamber (TPC) 17 3.5 Time-of-Flight 19 3.6 Muon Telescope Detector (MTD) 20 4 Measurement of J/ψ production cross-section via the dimuon decay channel in p+p collision at √s=510 GeV 22 4.1 Data Samples 22 4.1.1 Datasets and muon candidates selections 22 4.1.2 Monte Carlo Samples 30 4.2 J/ψ invariant cross section 34 4.2.1 The J/ψ kinematic acceptance and the polarization envelope 37 4.2.2 The MTD geometry acceptance 39 4.2.3 Vertex finding efficiency in the MTD-dimuon triggered events 42 4.2.4 Single muon efficiencies 47 4.2.5 Closure test for the J/ψ efficiency correction 59 4.2.6 J/ψ signal extraction 65 4.2.7 VPD efficiency (εVPD) 66 4.2.8 Integrated luminosity 73 4.3 Systematic Uncertainty 75 4.3.1 Signal extraction 76 4.3.2 TPC tracking efficiency 78 4.3.3 MTD related efficiency 78 4.3.4 Muon identification 81 4.3.5 In-bunch pileup 83 4.3.6 Total uncertainties 92 4.4 Results 93 4.5 Conclusions 95 5 Construction and the cosmic ray test of the Event Plane Detector 99 5.1 Detector upgrades for the Phase II of Beam Energy Scan program at STAR 99 5.2 Detector design and the construction at The Ohio State University 101 5.2.1 Design 101 5.2.2 Construction 102 5.3 Cosmic ray test at The Ohio State University and Brookhaven National Lab 104 6 Simulation studies and assembly of the STAR Forward Silicon Tracker 110 6.1 The STAR Forward Upgrade 110 6.1.1 Physics motivation 110 6.1.2 Forward Silicon Tracker 111 6.2 Simulation of tracking performance 112 6.2.1 Simulation setups 112 6.2.2 Results 113 6.2.3 Future work 115 6.3 Construct the GEANT geometry model for FST 116 6.3.1 FST mechanical structure 116 6.3.2 Building the FST geometry 116 6.4 Detector assembly at TiDC 123 6.4.1 Assembly fixtures and reference points 123 6.4.2 Assembly of outer hybrid PCB 126 6.4.3 Assembly of outer and inner mechanical structure 129 6.4.4 Assembly of inner hybrid PCB 131 6.4.5 Quality control 131 7 Conclusions 135 References 136 Appendix A Search for the muonic atom in Au+Au collision at √sN N = 200 GeV 144 A.1 Data Samples 144 A.1.1 Datasets and track selections 144 A.1.2 Particle identification 146 A.1.3 Can we use the topological information from HFT? 153 A.2 Invariant mass reconstruction 155 A.2.1 Pairing muon with hadrons and background estimation 155 A.2.2 Decay position versus invariant mass 157 A.3 Results 158 A.3.1 Background subtraction 158

    [1] ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1):1 – 29, 2012.
    [2] CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716(1):30 – 61, 2012.
    [3] ATLAS Collaboration and CMS Collaboration. Combined Measurement of the Higgs Boson Mass in pp Collisions at √s = 7 and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett., 114:191803, May 2015.
    [4] Particle Data Group. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.
    [5] W.N. Cottingham and D.A. Greenwood. An Introduction to the Standard Model of Particle Physics. Cambridge University Press.
    [6] Francis Halzen and Alan D. Martin. Quarks and Leptons: An Introduc- tory Course in Modern Particle Physics. Wiley.
    [7] R.K. Pathria and P.D. Beale. Statistical Mechanics. Elsevier Science, 2011.
    [8] David Griffiths. Introduction to Elementary Particles. Wiley-VCH.
    [9] A. Andronic et al. Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions. The European Physical Journal C, 76(3):107, 2016.
    [10] N. Brambilla et al. Heavy quarkonium physics. 2004.
    [11] Martin Beneke. Nonrelativistic effective theory for quarkonium pro- duction in hadron collisions. In The Strong interaction, from hadrons to partons: Proceedings, 24th SLAC Summer Institute on Particle Physics (SSI 96), Stanford, Calif., 19-30 Aug 1996, 1997.
    [12] Michael Kramer, 1. Quarkonium production at high-energy colliders. Prog. Part. Nucl. Phys., 47:141–201, 2001.
    [13] Yan-Qing Ma and Raju Venugopalan. Comprehensive Description of J/ψ Production in Proton-Proton Collisions at Collider Energies. Phys. Rev. Lett., 113:192301, Nov 2014.
    [14] ATLAS Collaboration. Measurement of the differential cross-sections of inclusive, prompt and non-prompt J/ψ production in proton-proton collisions at √s = 7 TeV. Nucl. Phys., B850:387–444, 2011.
    [15] Helmut Satz. The Quark-Gluon Plasma: A Short Introduction. Nucl. Phys. A, 862-863:4–12, 2011.
    [16] STAR Collaboration. Disappearance of Back-To-Back High-pT Hadron Correlations in Central Au+Au Collisions at √sNN = 200 GeV. Phys. Rev. Lett., 90:082302, Feb 2003.
    [17] ATLAS Collaboration. Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at √sNN = 2.76 TeV with the AT- LAS Detector at the LHC. Phys. Rev. Lett., 105:252303, Dec 2010.
    [18] Bedangadas Mohanty. Exploring the QCD phase diagram through high energy nuclear collisions: An overview. PoS, CPOD2013:001, 2013.
    [19] M. Harrison, T. Ludlam, and S. Ozaki. RHIC project overview. Nucl. Instrum. Meth. A, 499(2):235–244, 2003.
    [20] K.H. Ackermann et al. STAR detector overview. Nucl. Instrum. Meth. A, 499(2–3):624 – 632, 2003.
    [21] M. Anderson et al. The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Meth. A, 499(2–3):659 – 678, 2003.
    [22] Hans Bichsel. A method to improve tracking and particle identification in TPCs and silicon detectors. Nucl. Instrum. Meth. A, 562(1):154 – 197, 2006.
    [23] Yi Wang, Jingbo Wang, Jianping Cheng, Yuanjing Li, Qian Yue, Huang- shan Chen, and Jin Li. Production and quality control of STAR-TOF MRPC. Nucl. Instrum. Meth. A, 613(2):200–206, 2010.
    [24] Akindinov et al. Performance of the ALICE Time-Of-Flight detector at the LHC. The European Physical Journal Plus, 128(4):1–9, 2013.
    [25] L. Ruan et al. Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector. Journal of Physics G Nuclear Physics, 36(9):095001, September 2009.
    [26] C.Yangetal.CalibrationandperformanceoftheSTARMuonTelescope Detector using cosmic rays. Nucl. Instrum. Meth. A, 762:1–6, 2014.
    [27] T. C. Huang et al. Muon Identification with Muon Telescope Detector at the STAR Experiment. Nucl. Instrum. Meth. A, 833:88–93, 2016.
    [28] Rongrong Ma. Analysis Note: Measurement of J/ψ suppression in Au+Au collisions at √sNN = 200 GeV through the dimuon decay channel at STAR. http://www.star.bnl.gov/protected/heavy/ marr/paper/Run14_AuAu200_Jpsi/AnalysisNote/JpsiRaa_AN_ v2.pdf.
    [29] Rongrong Ma. Run-wise QA of MTD data for pp 500 GeV in Run13. https://www.star.bnl.gov/protected/heavy/marr/ Analysis/Jpsi/Run13_pp500/RunWise_QA.pdf.
    [30] W.J. Llope et al. The STAR Vertex Position Detector. Nucl. Instrum. Meth. A, 759:23–28, 2014.
    [31] Wangmei Zha et al. Systematic study of the experimental measurements on J/ψ cross sections and kinematic distributions in p+p collisions at different energies. Phys. Rev. C, 93(2):024919, 2016.
    [32] Rongrong Ma. Data vs embed comparison for Run13 analysis. https://www.star.bnl.gov/protected/heavy/marr/Analysis/ Jpsi/Run13_pp500/20151203_DataVsEmbed.pdf.
    [33] STAR Collaboration. Measurement of inclusive J /ψ polarization in p + p collisions at √s = 200 GeV by the STAR experiment. Phys. Rev. D, 102:092009, Nov 2020.
    [34] Pietro Faccioli et al. Towards the experimental clarification of quarkonium polarization. The European Physical Journal C, 69(3):657–673, Oct 2010.
    [35] Rongrong Ma. Study of MTD efficiencies for Run13 500 GeV p+p collisions. https://www.star.bnl.gov/protected/heavy/marr/ Analysis/Jpsi/Run13_pp500/20180711_MtdEff.pdf.
    [36] Takahito Todoroki. Study for Trigger Bias in J/ψ → μ+μ− events in Run15 p+p 200 GeV collisions. https://www.star.bnl.gov/ protected/lfsupc/tdrk/Analysis/MTD/Dimuon/Run15/2017_ 0619_TrigBias.pdf.
    [37] Takahito Todoroki. Trigger bias factor with luminosity and multiplicity weights. https://www.star.bnl.gov/protected/lfsupc/tdrk/ Analysis/MTD/Dimuon/Run15/2017_1018_TBwLumiMultWeight. pdf.
    [38] Thomas S. Ullrich. Finding a HF Tune for PYTHIA8. https://drupal.star.bnl.gov/STAR/system/files/Thomas_ Pythia.pdf.
    [39] STARheavyflavortuneforPYTHIA8.https://www.star.bnl.gov/ protected/heavy/ullrich/pythia8/.
    [40] STAR Collaboration. Transverse-Momentum and Collision-Energy De- pendenceofHigh-pT HadronSuppressioninAu+AuCollisionsatUl- trarelativistic Energies. Phys. Rev. Lett., 91:172302, Oct 2003.
    [41] David Tlustý. Measurements of D0 and D∗ Production in p + p Collisions at √s = 500 GeV. https://www.star.bnl.gov/protected/heavy/tlusty/Dstar2011/PaperProposal/ documents/PaperDraftV11.pdf.
    [42] STAR Collaboration. High pT nonphotonic electron production in p + p collisions at √s = 200 GeV. Phys. Rev. D, 83:052006, Mar 2011.
    [43] Rongrong Ma. Where to place data points? https://www.star.bnl.gov/protected/lfspectra/marr/Analysis/ PlaceDataPoints.pdf.
    [44] Yan-Qing Ma, Kai Wang, and Kuang-Ta Chao. J/ψ(ψ′) Production at the Tevatron and LHC at O(αs4v4) in Nonrelativistic QCD. Phys. Rev. Lett., 106:042002, Jan 2011.
    [45] Yan-Qing Ma and Ramona Vogt. Quarkonium production in an im- proved color evaporation model. Phys. Rev. D, 94:114029, Dec 2016.
    [46] FONLL Heavy Quark Production. http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html.
    [47] Grazyna Odyniec. The RHIC Beam Energy Scan program in STAR and what’s next . . .. Journal of Physics: Conference Series, 455:012037, Aug 2013.
    [48] Grazyna Odyniec. Beam Energy Scan Program at RHIC (BES I and BES II) –Probing QCD Phase Diagram with Heavy-Ion Collisions. PoS, CORFU2018:151, 2019.
    [49] The STAR Collaboration and The CBM Collaboration eTOF Group. Physics Program for the STAR/CBM eTOF Upgrade. arXiv:1609.05102, 2016.
    [50] Fuwang Shen, Shuai Wang, Fangang Kong, Shiwei Bai, Changyu Li, Flemming Videbæk, Zhangbu Xu, Chengguang Zhu, Qinghua Xu, and Chi Yang. MWPC prototyping and performance test for the STAR inner TPC upgrade. Nucl. Instrum. Meth. A, 896:90–95, 2018.
    [51] J. Adams, A. Ewigleben, S. Garrett, W. He, T. Huang, P.M. Jacobs, X. Ju, M.A. Lisa, M. Lomnitz, R. Pak, R. Reed, A. Schmah, P. Shan- muganathan, M. Shao, X. Sun, I. Upsal, G. Visser, and J. Zhang. The STAR event plane detector. Nucl. Instrum. Meth. A, 968:163970, 2020.
    [52] STAR collaboration. The STAR Forward Calorimeter System and Forward Tracking System. https://drupal.star.bnl.gov/STAR/ files/ForwardUpgrade.v20.pdf.
    [53] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. PYTHIA 6.4 physics and manual. Journal of High Energy Physics, 2006(05):026– 026, may 2006.
    [54] Xin-Nian Wang and Miklos Gyulassy. hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D, 44:3501–3516, Dec 1991.
    [55] R Brun, R Hagelberg, M Hansroul, and J C Lassalle. Simulation pro- gram for particle physics experiments, GEANT: user guide and refer- ence manual. CERN, Geneva, 1978.
    [56] Material Properties Data: Polyetheretherketone (PEEK). https://www.makeitfrom.com/material-properties/Unfilled-PEEK.
    [57] 3MTM NovecTM 7200 Engineered Fluid. https://multimedia.3m.com/mws/media/199819O/ 3m-novec-7200-engineered-fluid-en.pdf.
    [58] Taiwan Instrumentation And Detector Consortium (TIDC). https://tidc.phys.ntu.edu.tw/WordPress/.
    [59] R. Coombes, R. Flexer, A. Hall, R. Kennelly, J. Kirkby, R. Piccioni, D. Porat, M. Schwartz, R. Spitzer, J. Toraskar, S. Wiesner, B. Budick, and J. W. Kast. Detection of π − μ Coulomb Bound States. Phys. Rev. Lett., 37:249–252, Aug 1976.
    [60] Gordon Baym, Gerald Friedman, R. J. Hughes, and Barbara V. Jacak. Production of muon-meson atoms in ultrarelativistic heavy-ion colli- sions. Phys. Rev. D, 48:R3957–R3959, Nov 1993.
    [61] Joseph Kapusta and Agnes Mocsy. Hydrogenlike atoms from ultrarela- tivistic nuclear collisions. Phys. Rev. C, 59:2937–2940, May 1999.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE