簡易檢索 / 詳目顯示

研究生: 薛尹瑜
Hsueh, Yin-Yu
論文名稱: 製備鉑/氮化鋁鎵/氮化鎵高電子遷移率電晶體於高靈敏度氫氣感測器之應用
Pt/AlGaN/GaN High Electron Mobility Transistors for High-Sensitivity Hydrogen Sensor Applications
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 92
中文關鍵詞: 氣體感測器氮化鋁鎵/氮化鎵高電子遷移率電晶體介面態鹽酸及四甲基氫氧化銨溶液氫氣感測特性
外文關鍵詞: gas sensor, AlGaN/GaN high electron mobility transistors (HEMTs), surface states, HCl and TMAH treatments, hydrogen sensing characteristic
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,展示了兩階段表面處理的鉑/氮化鋁鎵/氮化鎵高電子遷移率電晶體(HEMT)的氫氣感測器。主要是利用鉑作為閘極金屬,與氫氣產生催化反應,使得氫分子斷鍵並吸附在氮化鋁鎵表面的介面態,進而增強通道載子濃度。
    相較於其他研究著重在改變元件結構或增加感測面積,本篇論文主要會探討介面態在HEMT氣體感測器中所扮演的角色。我們採取了兩階段溶液處理的方式來研究介面態濃度及種類對氣感特性的影響。首先,用鹽酸溶液減少氮化鎵表面上的天然氧化物,並在平台隔離蝕刻後,使用四甲基氫氧化銨溶液(TMAH)去除表面陷阱以及降低元件的粗糙度。通過這兩階段溶液處理,漏極和柵極漏電流降低了一個數量級以上,並有效改善了元件的次臨界擺幅特性,因而達到更佳的感測器靈敏度。另外,因TMAH溶液的蝕刻機制,會使得氮化鋁鎵表面的氮相關介面態的比例大幅增加,導致感測器對氫氣的吸附能力增強,進一步改善氣感特性。
    為了找出HEMT氣體感測器與溫度之間的關係,探討了不同溫度對氫靈敏度和反應時間的影響。另外,與一般兩端感測器元件不同,HEMT感測器能夠通過調整閘極的偏壓有效優化靈敏度,因此本實驗測試了不同閘極偏置下的氫氣響應值變化。最後,在柵極電壓保持最佳偏置以及溫度為250度時偵測1 ppm和100 ppm的氫氣濃度,得到的氫氣響應值分別為21.35 %及90.32 %。經溶液處理後的元件展現了出色的氫靈敏度與穩定性,顯示經兩階段表面處理的HEMT氫氣感測器具有良好的線性特性。

    In this work, a sensor based on the Pt/AlGaN/GaN High Electron Mobility Transistor (HEMT) with a two-step surface treatment for hydrogen sensor application was demonstrated. Platinum was used as the gate metal to produce a catalytic reaction with hydrogen, so that hydrogen molecules were dissociated and were adsorbed on the surface state. Therefore, the concentration of channel carrier was enhanced.
    Compared with other studies which focused on device structure or sensing area, the role of surface states in HEMT gas sensors would be mainly discussed in this paper. A two-step surface treatment method was adopted to investigate the influence of concentration and type of surface states on the gas-sensing characteristics. First, the HCl treatment was applied to remove the native Ga-oxide on the wafer surface. Then, after mesa isolation etching, a tetramethylammonium hydroxide (TMAH) treatment was used to remove the surface traps from the surface and make the GaN surface smooth. Through the two-step treatment, the drain and gate leakage currents were reduced by more than an order of magnitude, and the subthreshold swing voltages of the devices were effectively improved, thereby achieving better sensor sensitivity. In addition, due to the etching mechanism of the TMAH solution, the ratio of the nitrogen-related interface states on the AlGaN surface would be greatly increased, which improved the ability to adsorb hydrogen and further enhanced the gas sensing characteristics.
    To determine the relationship between the HEMT sensor and the temperature, the effects of different temperatures on hydrogen sensitivity and reaction time were investigated. In addition, as compared to two-terminal sensor devices, HEMT sensors more effectively optimized the sensitivity by adjusting the bias voltage of the gate. Thus, the variations in the hydrogen response value under different gate bias were tested. When the gate voltage was maintained at the optimal bias, and the temperature was 250°C, the response values to 1 ppm and 100 ppm H2 were 21.35% and 90.32%, respectively. After the surface treatments, the device exhibited excellent sensitivity and stability, indicating that the sensor had good linear characteristics.

    中文摘要 I Abstract III 誌謝 VI CONTENTS VIII List of tables XII List of Figures XIII Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 3 1-3 Organization 7 Chapter 2 Literature Survey 9 2-1 Introduction of gas sensor 9 2-2 Types of Gas Sensor 10 2-2-1 Catalytic Combustion Gas Sensors 10 2-2-2 Hot Wire Semiconductor Gas Sensors 11 2-2-3 Infrared Gas Sensors 13 2-2-4 Electrochemical Gas Sensors 14 2-2-5 Semiconductor Gas Sensors 16 2-3 Non-Resistive Semiconductor Gas Sensors 18 2-3-1 Sensing Mechanism 18 2-3-2 Performance Properties 19 2-3-3 Influencing Factors on Response 20 2-3-3-1 Temperature 20 2-3-3-2 Gate Bias 20 2-3-3-3 Gate Dimension 22 2-3-3-4 Gate Metal Thickness 24 Chapter 3 Experiments 25 3-1 Experimental Equipment 25 3-1-1 Oven 25 3-1-2 Spin Coater 26 3-1-3 Mask Aligner 27 3-1-4 Electron Beam Evaporator 28 3-1-5 Sputter 28 3-1-6 Rapid Thermal Annealing System 30 3-1-7 ICP Etching System 31 3-1-8 Semiconductor Analyzer 32 3-1-9 Atomic Force Microscope 33 3-1-10 Transmission Electron Microscopy 34 3-2 Device fabrication 35 3-2-1 Sample Cleaning 36 3-2-2 Mesa Isolation 37 3-2-3 Source and Drain Lithography 39 3-2-4 Source and Drain Ohmic Contacts 40 3-2-5 Gate Definition 41 3-2-6 Schottky Gate Deposition 42 3-3 Schematic Procedures 43 Chapter 4 Results and Discussion 46 4-1 Structure of GaN Gas Sensor 46 4-2 Physical Properties of GaN Gas Senser 47 4-2-1 Atomic Force Microscopy (AFM) Analysis 47 4-2-2 Transmission Electron Microscopy (TEM) Analysis 50 4-2-3 Energy dispersive spectroscopy (EDS) Analysis 52 4-3 Surface Treatment DC Performance 54 4-3-1 Subthreshold Swing and On-Off Ratio 55 4-3-2 Gate Leakage Current 57 4-3-3 Pulse I-V Characteristics 58 4-4 Surface Treatment Sensing Performance 60 4-4-1 Temperature-Dependent Sensitivity 60 4-4-2 Gate-Voltage-Dependent Sensitivity 67 4-4-3 Concentration-Dependent Sensitivity 72 4-4-4 Repeatability and Dynamic Response 78 4-4-5 Sensing Mechanism 80 Chapter 5 Conclusion 84 Chapter 6 Future Work 86 Reference 87

    [1] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, “Semiconducting metal oxides as sensors for environmentally hazardous gases,” Sensors and Actuators B: Chemical, vol. 160, no. 1, pp. 580-591, Dec. 2011.
    [2] D. Cecere, E. Giacomazzi and A. Ingenito, "A review on hydrogen industrial aerospace applications", Int. J. Hydrogen Energy, vol. 39, no. 20, pp. 10731-10747, Jul. 2014.
    [3] W. J. Buttner, M. B. Post, R. Burgess and C. Rivkin, "An overview of hydrogen safety sensors and requirements", Int. J. Hydrogen Energy, vol. 36, no. 3, pp. 2462-2470, Feb. 2011.
    [4] P. Agnolucci, "Economics and market prospects of portable fuel cells", Int. J. Hydrogen Energy, vol. 32, no. 17, pp. 4319-4328, Dec. 2007.
    [5] T. Petkov, T. N. Veziroǧlu and J. W. Sheffield, "An outlook of hydrogen as an automotive fuel", Int. J. Hydrogen Energy, vol. 14, no. 7, pp. 449-474, 1989.
    [6] S. Dow, "Fuel cells and LEDs combine to light the way towards the green economy", Fuel Cells Bull., vol. 2011, no. 8, pp. 12-14, 2011.
    [7] A. Züttel, "Materials for hydrogen storage", Mater. Today, vol. 6, no. 9, pp. 24-33, Sep. 2003.
    [8] S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen, "Complex hydrides for hydrogen storage", Chem. Rev., vol. 107, no. 10, pp. 4111-4132, Oct. 2007.
    [9] J. Ahn, D. Kim, K. H. Park, G. Yoo and J. Heo, "Pt-decorated graphene gate AlGaN/GaN MIS-HEMT for ultrahigh sensitive hydrogen gas detection," in IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 1255-1261, March 2021.
    [10] S. A. Eliza and A. K. Dutta, "Ultra-high sensitivity gas sensors based on GaN HEMT structures," International Conference on Electrical & Computer Engineering (ICECE 2010), pp. 431-433, 2010.
    [11] J. Song and W. Lu, "Operation of Pt/AlGaN/GaN-heterojunction field-effect-transistor hydrogen sensors with low detection limit and high sensitivity," IEEE Electron Device Letters, vol. 29, no. 11, pp. 1193-1195, Nov. 2008.
    [12] C. Bishop, Y. Halfaya, A. Soltani, S. Sundaram, X. Li, J. Streque, Y. El Gmili, P.L. Voss, J. Paul Salvestrini, and A. Ougazzaden, "Experimental study and device design of NO, NO2, and NH3 gas detection for a wide dynamic and large temperature range using Pt/AlGaN/GaN HEMT," IEEE Sensors Journal, vol. 16, no. 18, pp. 6828-6838, Sept.15, 2016.
    [13] J. W. Do, H. W. Jung, M. J. Shin, H. K. Ahn, H. Kim, R. H. Kim, K. J. Cho, S. J. Chang, B. G. Min, H. S. Yoon, J. H. Kim, J. M. Yang, J. H. Lee, and J. W. Lim, “The effects of tetramethylammonium hydroxide treatment on the performance of recessed-gate AlGaN/GaN high electron mobility transistors,” Thin Solid Films, vol. 628, no. 30, pp. 31-35, Apr. 2017.
    [14] D. H. Son, Y. W. Jo, C. H. Won, J. H. Lee, J. H. Seo, S. H. Lee, J. W. Lim, J. H. Kim, I. M. Kang, S. C, and J. H. Lee, “Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching,” Solid-State Electronics, vol. 141, pp. 7-12, Mar. 2018.
    [15] Y. J. Yoon, J. H. Seo, M. S. Cho, H. S. Kang, C. H. Won, I. M. Kang, and J. H. Lee, “TMAH-based wet surface pre-treatment for reduction of leakage current in AlGaN/GaN MIS-HEMTs,” Solid-State Electronics, vol. 124, pp. 54-57, Oct. 2016.
    [16] S. A. Hooker, “Nanotechnology advantages applied to gas sensor development,” The nanoparticles 2002 conference proceedings, pp. 1-7, 2002.
    [17] “https://www.gastec.co.jp/en/ product/detail/id=2205”
    [18] “https://www.materialsnet.com.tw/DocView.aspx?id=5009”
    [19] “https://www.rikenkeiki.com/cms/riken/img/techinfo/sensor_princip
    le/pdf/04_SH.pdf”
    [20] “http://www.ndl.org.tw/docs/publication/22_3/pdf/E1.pdf”
    [21] T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sensors and Actuators B: Chemical, vol. 231, pp. 529-538, Aug. 2016.
    [22] K. I. Tsceng, and M. C. Yang, “Platinum electrodes modified by tin for electrochemical CO sensors,” Journal of The Electrochemical Society, vol. 150, no. 7, pp. H156-H160, May. 2003.
    [23] R. Knake, and P. C. Hauser, “Portable instrument for electrochemical gas sensing,” Analytica Chimica Acta, vol. 500, no. 1-2, pp. 145-153, Dec. 2003.
    [24] “https://www.figaro.co.jp/en/technicalinfo/principle/electrochemical -type.html”
    [25] “https://www.emerson.com/documents/automation/white-paper-ele
    ctrochemical-vs-semiconductor-gas-detection-en-5351114.pdf”
    [26] H. Nazemi, A. Joseph, J. Park, and A. Emadi, “Advanced micro-and nano-gas sensor technology: A review,” Sensors, vol. 19, no. 6, p. 1285, Mar. 2019.
    [27] “http://toments.com/202036/”
    [28] J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher and M. Stutzmann, "Gas sensitive GaN/AlGaN-heterostructures", Sensors and Actuators B: Chemical, vol. 87, no. 3, pp. 425-430, Dec. 2002.
    [29] I. Lundström, S. Shivaraman, C. Svensson and L. Lundkvist, "A hydrogen-sensitive MOS field-effect transistor", Appl. Phys. Lett., vol. 26, no. 2, pp. 55-57, 1975.
    [30] I. Lundström and C. Svensson, “Solid state chemical sensors”, Orlando, FL, USA: Academic, 1985.
    [31] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, “A survey on gas sensing technology,” IEEE Sensors Journal, vol. 12, no. 7, pp. 9635-9665, Jul. 2012.
    [32] J. Huang, and Q. Wan, “Gas sensors based on semiconducting metal oxide one-dimensional nanostructures,” IEEE Sensors Journal, vol. 9, no. 12, pp. 9903-9924, Dec. 2009.
    [33] C. Bishop, J. P. Salvestrini, Y. Halfaya, S. Sundaram, Y. El Gmili, L. Pradere, J. Y. Marteau, M. B. Assouar, P. L. Voss, and A. Ougazzaden, "Highly sensitive detection of NO2 gas using BGaN/GaN superlattice-based double Schottky junction sensors", Appl. Phys. Lett., vol. 106, no. 24, pp. 243504, Jun. 2015.
    [34] T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, C. F. Chang, P. C. Chou, and W. C. Liu., "On an ammonia gas sensor based on a Pt/AlGaN heterostructure field-effect transistor", IEEE Electron Device Lett., vol. 33, no. 4, pp. 612-614, Apr. 2012.
    [35] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, "Ammonia sensing properties of a Pt/AlGaN/GaN Schottky diode", IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1541-1547, May 2011.
    [36] J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher and M. Stutzmann, "Group III-nitride-based gas sensors for combustion monitoring", Mater. Sci. Eng. B, vol. 93, no. 1, pp. 207-214, May 2002.
    [37] “https://www.alcatechnology.com/en/blog/magnetron-sputtering/”
    [38] “https://www.nanosurf.com/en/support/afm-operating-principle”
    [39] “https://ir.nctu.edu.tw/bitstream/11536/65990/15/152715.pdf”
    [40] B. Luo, J. W. Johnson, J. Kim, R. M. Mehandru, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, A. G. Baca, R. D. Briggs, R. J. Shul, C. Monier, and J. Han, “Influence of MgO and Sc2O3 passivation on AlGaN/GaN high-electron-mobility transistors,” Appl. Phys. Lett., vol. 80, no. 9, pp. 1661–1663, Mar. 2002.
    [41] N. C. Van, K. Hyungtak, “High performance NO2 gas sensor based on Pd-AlGaN/GaN high electron mobility transistors with thin AlGaN barrier”, JSTS, IEIE Vol. 20, No. 2, p.170-176, 2014.
    [42] H. O. Chahdi, O. Helli, N. E. Bourzgui, L. Breuil, D. Danovitch, P. L. Voss, S. Sundaram “Sensors based on AlGaN/GaN HEMT for fast H2 and O2 detection and measurement at high temperature,” IEEE Sensors Journal, pp. 1-4, 2019.
    [43] S. Das, S. Majumder, R. Kumar, M.K. Mahata, S.M. Dinara and D. Biswas, "Comprehensive modeling of gas sensor based on Si3N4-passivated AlGaN/GaN Schottky diode," 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), pp. 1-4, 2014.
    [44] R. Sokolovskij, R. Sokolovskij, J. Zhang, H. Zheng, W. Li, Y. Jiang, G. Yang, H. Yu, "The impact of gate recess on the H₂ detection properties of Pt-AlGaN/GaN HEMT sensors," IEEE Sensors Journal, vol. 20, no. 16, pp. 8947-8955, Aug.15, 2020.
    [45] A. Watanabe, S. Nakamura and T. Okumura, "Selective hydrogen detection of Pd/AlGaN/GaN HEMT-type sensors by temperature sweep operation," IEEE Sensors Journal, 2012 IEEE, pp. 1-4, 2012.
    [46] J. Schalwig, G. Müller, M. Eickhoff, O. Ambacher, M. Stutzmann, "Gas sensitive GaN/AlGaN-heterostructures, " Sensors and Actuators B: Chemical, Volume 87, Issue 3, pp. 425-430, 2002.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE