簡易檢索 / 詳目顯示

研究生: 李宗勳
Lee, Tsung-Hsun
論文名稱: 有機半導體磁光電效應與界面特性分析
Photo-induced magneto conductance responses and interfacial properties in organic diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
黃榮俊
Huang, J. C. A.
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 有機半導體自旋電子磁阻磁電導
外文關鍵詞: magnetoresistance, organic, spintronics, magnetoconductance
相關次數: 點閱:84下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文工作為有機半導體元件的磁光電效應與界面特性的分析,在光致電壓元件的磁響應分析與量測部分,我們發現在完全不具有鐵磁元素的有機光致電壓元件有很大的外加磁場磁電導效應,而此一效應可以藉由外加電壓的調制改變其大小與磁電導的正負值,為研究此一機制我們製作異質接面太陽電池元件結構後得到當受體材料存在時電荷複合能態的存在將使的外加磁場響應受到抑制,而在進一步的研究中我們得到材料中的單重態激發態不論激發子或極化子對在外加磁場效應下可以貢獻出正的磁電導,而材料中的三重態激發態則會貢獻出負的磁電導效應,因激發子的單重態與三重態能量差大約在1eV,因此我們發現外加磁場響應主要作用發生在極化子對上,為研究此一激發態磁轉換機制對元件特性的影響,我們製作不同電極討論此激發態轉換行為,我們發現當使用Ca電極時元件中的主要激發態磁響應的貢獻為三重態,而使用Al電極會觀察到單重態的磁響應貢獻,當我們使用LiF做為電極不論是LiF/Al或是LiF/Ca都會減少三重態的貢獻。
    有機元件界面特性會影響元件的電子電洞傳導及注入效率,而金屬電極的熱蒸鍍過程容易破壞有機半導體主動層中的激發子再結合區,使元件發光效率受到抑制,因此在本論文工作中我們使用有機氧化poly(ethylene glycol) dimethyl ether (PEGDE)做為陰電極緩衝層,保護主動層不被熱蒸鍍金屬破壞,但是PEGDE本身卻是一絕緣材料,當PEGDE的存在本應該使電子注入困難,但是我們卻發現藉由PEGDE與金屬Al的搭配將有效的使元件效率(14.53 cd/A)提升約為以Al金屬做為電極時(0.16 cd/A)的100倍。透夠X光光電子能譜的分析我們發現當PEGDE與金屬Al搭配時發現樣品會觀察到金屬與碳的鍵結,藉由能譜解析我們發現此鍵結為C-Al或C-O-Al的鍵結,我們推測此一複合材料電極的產生將有助於電子的注入,亦即表面功函數會降低。

    This study elucidates the influence of applied magnetic field, electrical bias and the type of device electrode on the dissociation, intersystem crossing, and charge reaction processes of photo- and electro-induced excited states in regioregular poly(3-hexylthiophene) (P3HT)-based polymer photovoltaic devices. The dissociation of the singlet polaron-polaron (PP) pairs, as facilitated by the applied magnetic field, is responsible for a positive Magneto Conductance (MC) effect. However, a negative MC effect is dominated by the decline of charge-reaction rates, for triplet excitons. The net MC responses of the photovoltaic cells are basically the sum of the positive and negative MC effects, which can be manipulated by the applied magnetic field and electrical bias. An inversion in the MC response is observed at the electrical bias near the open-circuit voltage (Voc). In addition, blending of an electron acceptor material, [6,6]-phenyl C61-butyric acid methyl ester, in P3HT active layer quenches the photo-excited states at the donor-acceptor interface and results in distinct MC responses of photovoltaic cells, which probably are related to the features indicating the formation of intermolecular charge-transfer complexes at donor-acceptor junction.
    Spin-casting or thermal evaporation in vacuum of a salt-free, neutral, organic-oxide ultra-thin film as a buffer layer with an aluminum (Al) cathode has become an alternative approach for fabricating high-performance organic and polymer light-emitting diodes (O/PLEDs). The electroluminescence efficiency of phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLEDs is 0.16 cd/A when Al is used as the device cathode, but is approximately two orders of magnitude higher, 14.53 cd/A, when an organic oxide/Al composite cathode is used. The polymer/metal junction in PLEDs with and without depositing an ultra-thin organic oxide interlayer is studied by X-ray photoelectron spectroscopy. Experimental results indicate that the deposition of an Al electrode causes the oxidation at the surface of the light-emissive polymer layer. Introducing an organic-oxide cathode buffer layer suppresses the oxidation and the diffusion of the Al atoms into the functional polymer layer. The formation of a carbide-like (negative carbon) thin layer, which accompanies interfacial interactions, is critical to the injection of electrons through the Al cathode. The balanced charge injection is responsible for the substantially improved device performance. This process is specific to the organic oxide/Al interface, as revealed by a comparison with similar device configurations that have Ag as the electrode, in which no significant interaction in the interface is observed.

    第一章 簡介及研究動機 (Introduction and motivation) 1.1有機半導體 1.1-0 前言……………………………………………………………………….….1 1.1-1 π-conjugated ……………………………………………………………….…1 1.1-2 有機發光二極體……………………………………....……………………..3 1.1-3 有機太陽能電池………………………………….………………………….5 1.2 自旋電子 1.2-1 異向性磁電阻…………………………………………….………………….8 1.2-2 巨磁電阻……………………………………...……………………………...8 1.2-3 穿隧式磁阻元件……………………………………………..……………....9 1.2-4 稀磁性半導體……………………………………………………………….11 1.3 有機自旋電子 1.3-1 有機自旋電子的發展……………………………………………………….12 1.3-2 有機自旋電子的機制爭議……………………………………………….....14 1.4 動機………………….………………………………………………………....20 1.5 參考資料…………...…………………………………………………………. 22 第二章 有機磁效應理論與機制討論 2.1 π-conjugated 高分子激發態…………………………………………………...24 2.2 氫原子模型自旋相依量子效應 2.2-1 自旋-軌道耦合……………………………………………………………....26 2.2-2 超精細作用……………………………..…………………………………....27 2.2-3交換耦合作用…………………………….……………..…………………....29 2.2-4 Zeeman效應……………………………….…………………………………30 2.3 有機磁電導…………………………………………………………………….32 2.3-1 橫向傳輸………………………………....………………………………….33 2.3-2 單重態與三重態電子電洞分離………………………………………….....36 2.3-3三重態-三重態消滅………………………………….…………………..…..37 2.3-4 激發子與電荷作用……………………………….……………………..…..38 2.3-5 有機材料能量轉換過程……………………………………...………..……40 2.4參考資料…………………………………………………………………….….43 第三章 有機半導體能譜分析與界面特性 3.1 x光光電子能譜工作原理 3.1-1 儀器基本架構設計………………………………….………………….…....45 3.1-2 光電子能譜分析.…………………………………………………………….47 3.2 X光光電子能譜量測技術 3.2-1 能量偏移……………...……………………………………………………...52 3.2-2 樣品表面清潔………………………………………………………………..52 3.2-3 有機材料表面分析…………………………………………………………..54 3.3 紫外光電子能譜……………………………………………………….…..…..55 3.4實驗架構………………………………………………………………………..57 3.5 參考資料……………………………………………………………………….59 第四章 有機磁光電元件製作與量測 4.1-0元件結構介紹………………………………………………………………..60 4.1-1 ITO黃光蝕刻製作…………………………………………………………...61 4.1-2 有機光電主動層與電洞傳輸層塗佈………………………………………..61 4.1-3 上電極製作…………………………………………………………………..63 4.2 元件量測與分析……………………………………………………………….64 4.2.1光致電壓元件效率量測……………………………………………………...64 4.2.2 磁電導量測…………………………………………………………………..66 4.3 參考資料……………………………………………………………………….70 第五章 激發態態相關磁電導響應在高分子光致電壓元件 5.1前言………………..…………………………………………………………...71 5.2 結果與討論 5.2-1 不同電極磁響應…………………………………………….........................74 5.2-2 界面耦極磁響應…………………………………………….........................77 5.2-3 外加電場作用下的磁響應…………………………………………….........79 5.2-4 電荷轉換複合態的磁響應…………………………………………….........83 5.3 結論……………………………………………………………………….........87 5.4 參考資料…………………………………………………………………….…88 第六章 有機氧化電極在在高效率發光二極體的應用 6.1 前言…………………………………………………………………………….90 6.2 實驗設置 6.2-1 PLEDs元件製作……………………………………………………………....91 6.2-2 光電子能譜樣品準備……….……………………………………………….92 6.2-3 PLEDs 電流-亮度-電壓及光電壓量測……………………...……………....93 6.2-4 光電子能譜量測……………………………………………………………..93 6.3 結果與討論(Results and discussion) 6.3-1 PLEDs 電流-亮度-電壓量測………………………………………………..95 6.3-2 PLED元件光致電壓量測…………………………………………………...98 6.3-3 未經表面處理樣品XPS分析………………………………………………99 6.3-4 表面處理與電子能譜分析……………………………………………..….106 6.3-5 表面功函數變化量測……………………………………………………...110 6.4 結論…………………………………………………………………………..112 6.5 參考資料……………………………………………………………………..113 第七章 總結與未來工作 7.1 總結 7.1-1有機元件磁效應….………………………………………………..……….116 7.1-2 有機元件界面分析………………………………………………..……….117 7.2 未來工作……………………………………………………………………...118

    第一章
    1.C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).
    2.D. Braun, A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
    3.C. W. Tang, S. A.VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    4.L. S. Huang, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
    5.H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
    6.C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
    7.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).
    8.R. Hoffmann, C. Janiak, C. Kollmar, Macromolecules 24, 3725 (1991).
    9.C.W. Tang, Appl. Phys. Lett. 48, 183 (1986).
    10.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F.Wudl, Science 258, 1474 (1992).
    11.J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Appl. Phys. Lett. 68, 3120 (1996).
    12.D. E. Markov, C. Tanase, P. W. M. Blom, J. Wildeman, Phys. Rev. B 72, 045217 (2005).
    13.D. E.Markov, E. Amsterdam, P. W. M. Blom, A. B. Sieval, and J. C. Hummelen, J. Phys. Chem. A 109, 5266 (2005).
    14.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 270, 1789 (1995).
    15.S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).
    16.A. J. Koaster, P.W. Bolm, Ph. D. thesis (2007), Molecular Electronics Zernike Institute for Advanced Materials University of Groningen.
    17.M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Eitenne, G. Greuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    18.G. Binasch, P. Grnberg, F. Saurenbach, W. Zinn, Phys. Rev. B, 39, 4828 (1989).
    19.J. S. Moodera, Lisa R. Kinder, T. M. Wang, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).
    20.J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nature Materials, 4, 173 (2005).
    21.U. E. Steiner, T. Ulrich, Chem. Rev. 89, 51 (1989).
    22.E. Frankevich, A. Zakhidov, K. Yoshino, Y. Maruyama, K. Yakushi, Phys. Rev. B, 53, 4498 (1996)
    23.Z. H. Xiong, D. Wu, Z. V. Vardeny, J. Shi, Nature, 427, 821 (2004)
    24.Ő. Mermer, G.. Veeraraghavan, T. L. Francis. Y. Sheng, T. D. Nguyen, M. Wohlgenannt, A. Khler, M. K. Al-Suti, M. S. Khan, Phys. Rev. B, 72, 205202 (2005).
    25.E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, H. H. Hrhold, Phys. Rev. B, 46, 9320 (1992).

    第二章
    1.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
    2.M. A. Baldo, S. R. Forrest, Phys. Rev. B, 62, 10958 (2000)
    3.E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, H. H. Hrhold, Phys. Rev. B, 46, 9320 (1992).
    4.A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brdas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, H. Bssle, Phys. Rev. Lett. 93, 066803-1 (2004).
    5.Yu. V. Romanovskii, A. Gerhard, B. Schweitzer, U. Scherf, R. I. Personov, H. Bssler, Phys. Rev. Lett. 84, 1027 (2000).
    6.D. Hertel, S. Setayesh, H. G. Nothofer, U. Scherf, K. Mllen, H. Bssler et al., Adv. Mater. 13, 65 (2001).
    7.A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, S. Navaratnam, Phys. Rev. Lett. 86, 1358 (2001).
    8.A. Khler et al., J. Chem. Phys. 116, 9457 (2002).
    9.H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, J. R. Durrant, J. Am. Chem. Soc. 130, 3030 (2008).
    10.Z. Chiguvare, V. Dyakonov, Phys. Rev. B, 70, 235207 (2004)
    11.M. P. de Haas, J. M. Warman, T. D. Anthopoulos, D. M. de Leeuw, Adv. Funct. Mater. 16, 2274 (2006).
    12.N. Zettili, Quantum Mechanics: Concepts and Applications (WILEY, 2001)
    13.Quantum mechanical
    14.U. Steiner, T. Ulrich, Chem. Rev. 89, 51 (1989).
    15.J. Kalinowski, J. Szmytkowski, W. Stampor, Chem. Phys. Lett. 378, 380 (2003).
    16.Y. Sheng, T. D. Nguyen, G. Veeraraghavan, . Mermer, M. Wohlgenannt, Phys. Rev. B, 75, 035202 (2007).
    17.B. Hu, Y. Wu, Nat. Mater. 6, 985 (2007).
    18.Z. Xu, B. Hu, Adv. Funct. Mater. 18, 2611 (2008).
    19.Y. Wu, Z. Xu, B. Hu, Phys. Rev. B, 75, 035214 (2007).
    20.Martin Pope, Charles E. Swenberg, Electrical Processes in Organic Crystals and Polymers, Oxford University Press, (1999).
    21.B. Brocklehurst, Nature, 221, 921 (1969).
    22.J. Frenkel, Phys. Rev. 54, 647 (1938).
    23.I. Onsager, Phys. Rev. 54, 554 (1938).
    24.R. C. Johnson, R. E. Merrifield, Phys. Rev. B1, 896 (1970).
    25.V. Ern, H. Bouchriha, J. Fourny, G. Delacte, Solid State Comm. 9, 1201 (1971).

    第三章
    1.A. Einstein, Ann. Physik, 17,132 (1905).
    2.K. Siegbahn, Nova Acta Regiae Soc.Sci. 20, Ser. IV (1967).
    3.R. M. Nix, http://www.chem.qmul.ac.uk/surfaces/scc/, “An Introduction to Surface Chemistry”.
    4.Y. Sun, F. Machuca, J. Vac. Sci. Technol. A, 21, 212 (2003).
    5.P. Griining, O. M. Kittel, M. Collaud-Coen, G. Dietler, L. Schlapbach, Appl. Surf. Sci. 89, 83 (1995).
    6.M. Larive, J. Nagle, J. P. Landesman, X. Marcadet, C. Mottet, P. Bois, J. Vac. Sci. Technol. B, 11, 1413 (1993).

    第四章
    1.G. Li, V.Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Mater. 2005, 4, 864.
    2.T. F. Guo, T. C. Wen, G. L. Pakhomov, X.G. Chin ,S. H. Liou, P. H. Yeh, C. H. Yang, Thin Solid Film 2008, 516, 3138.
    3.P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, M. R. J. Gibbs, Phys. Rev. B, 2007, 75, 094423.

    第五章
    1.. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Khler, M. K. Al-Suti, M. S. Khan, Phys. Rev. B, 2005, 72, 205202.
    2.P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, J. Appl. Phys. 2007, 102, 073710.
    3.P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, Phys. Rev. B, 2007, 76, 235202.
    4.E. Frankevich, A. Zakhidov, K. Yoshino, Y. Maruyama, K. Yakushi, Phys. Rev. B, 1996, 53, 4498.
    5.Z. Xu, B. Hu,.J. Howe, J. Appl. Phys. 2008, 103, 043909.
    6.J. Kalinowski, J. Szmytkowski, W. Stampor, Chem. Phys. Lett. 2003, 378, 380.
    7.T. H. Lee, T. F. Guo, J. C. A. Huang, T. C. Wen, Appl. Phys. Lett. 2008, 92, 153303.
    8.U. E. Steiner, T. Ulrich, Chem. Rev. 1989, 89, 51.
    9.E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, R. H. Baughman, H. H. Hrhold, Phys. Rev. B, 1992, 46, 9320.
    10.J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori, P. Di Marco, Phys. Rev. B, 2004, 70, 205303.
    11.B. Hu, Y. Wu, Nature Mater. 2007, 6, 985.
    12.Z. Xu, B. Hu, Adv. Funct. Mater. 2008, 18, 2611
    13.A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brdas, V. I. Arkhipov, P. Heremans, E.V. Emelianova, H. Bssler, Phys. Rev. Lett. 2004, 93, 066803-1.
    14.G. D. Scholes, G. Rumbles, Nature Mater. 2006, 5, 683.
    15.H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, J. R. Durrant, J. Am. Chem. Soc. 2008, 130, 3030.
    16.A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, S. Navaratnam, Phys. Rev. Lett. 2001, 86, 1358.
    17.V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, M. T. Rispens. J. Appl. Phys. 2003, 94, 6849
    18.C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.

    第六章
    1.D. Braun, A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
    2.C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    3.L. S. Huang, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
    4.H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 16, 45 (2006).
    5.C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
    6.G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science, 270, 1789 (1995).
    7.C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
    8.S. H. Li, Z. Xu, L. Ma, C. W. Chu, Y. Yang, Appl. Phys. Lett. 91, 083507 (2007).
    9.T. F. Guo, Z. J. Tsai, S. Y. Chen, T. C. Wen, C. T. Chung, J. Appl. Phys. 101, 124505 (2007).
    10.P. Dannetun, M. Logdlund, M. Fahlman, M. Boman, S. Stafstrom, W. R. Salaneck, R. Lazzaroni, C. Fredriksson, J. L. Bredas, S. Graham, R. H. Friend, A. B. Holmes, R. Zamboni, C. Talliani, Synth. Met. 55, 212 (1993).
    11.T. P. Nguyen, J. Ip, P. Jolinat, P. Destruel, Appl. Surf. Sci. 172, 75 (2001).
    12.W. J. H. van Gennip, J. K. J. van Duren,; P. C. Thune, R. A. J. Janssen, J. W. Niemantsverdriet, J. Chem. Phys. 117, 5031 (2002).
    13.A. Crispin, A. Jonsson, M. Fahlman, W. R. Salaneck, J. Chem. Phys. 115, 5252 (2001).
    14.G. G. Andersson, W. J. H. van Gennip, J. W. Niemantsverdriet, H. H. Brongersma, Chem. Phys. 278, 159 (2002).
    15.R. Sutcliffe, W. W. Lee, J. F. Gaynor, J. D. Luttmer, D. Martini, J. Kelber, M. A. Plano, Appl. Surf. Sci. 126, 43 (1998).
    16.L. Sandrin, E. Sacher, Appl. Surf. Sci. 135, 339 (1998).
    17.G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
    18.J. Yoon, J. J. Kim, T. W. Lee, O. O. Park, Appl. Phys. Lett. 76, 2152 (2000).
    19.J. Huang, Z. Xu, Y. Yang, Adv. Funct. Mater. 17, 1966 (2007).
    20.T. W. Lee, O. O. Park, L. M. Do, T. Zyung, T. Ahn, H. K. Shim, J. Appl. Phys. 90, 2128 (2001).
    21.Y. Cao, G. Yu, A. J. Heeger, Adv. Mater. 10, 917 (1998).
    22.Q. Xu, J. Ouyang, Y. Yang, T. Ito, J. Kido, Appl. Phys. Lett. 83, 4695 (2003).
    23.T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, Appl. Phys. Lett. 87, 013504 (2005).
    24.T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, C. T. Chung, Appl. Phys. Lett. 88, 113501 (2006).
    25.T. F. Guo, F. S. Yang, Z. J. Tsai, G. W. Feng, T. C. Wen, S. N. Hsieh, C. T. Chung, C. I. Wu, Appl. Phys. Lett. 89, 051103 (2006).
    26.T. F. Guo, F. S. Yang, Z. J. Tsai, T. C. Wen, C. I. Wu, C. T. Chung, Appl. Phys. Lett. 89, 053507 (2006).
    27.X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, Y. Cao, Appl. Phys. Lett. 84, 3522 (2004).
    28.Y. H. Niu, H. Ma, Q. Xu, A. K. Y. Jen, Appl. Phys. Lett. 86, 083504 (2005).
    29.J. H. Park; O. O. Park; J. W. Yu, J. K. Kim, Y. C. Kim, Appl. Phys. Lett. 84, 1783 (2004).
    30.K. Cho, S. W. Cho, C. N. Whang, K. Jeong, S. J. Kang, Y. Yi, Appl. Phys. Lett. 91, 152107 (2007).
    31.H. Becker, H. Spreitzer, W. Kreuder, E. Kluge, H. Schenk, I. Parker, Y. Cao, Adv. Mater. 12, 42 (2000).
    32.G. L. Pakhomov, L. G. Pakhomov, V. I. Shashkin, J. M. Tura, J. M. Ribo, L. Ottaviano, Nucl. Instr. and Meth. in Phys. Res. B, 194, 269 (2002).
    33.C. C. Wang, G. H. Hsiue, J. Polymer Sci. Pt. A, 31, 2601 (1993).
    34.M. Atreya, S. Li, E. T. Kang, K. G. Neoh, K. L. Tan, Polymer Degradation and Stability, 63, 53 (1999).
    35.N. Dam, M. M. Beerbom, J. C. Braunagel, R. Schlaf, J. Appl. Phys. 97, 024909 (2005).
    36.K. Konstadinidis, F. Papadimitrakopoulos, M. Galvin, R. L. Opila, J. Appl. Phys. 77, 5642 (1995).
    37.M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, T. M. Miller, Phys. Rev. Lett. 73, 744 (1994).
    38.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brdas, M. Lgdlund, W. R. Salaneck, Nature, 397, 121 (1999).
    39.D. R. Baigent, A. B. Holmes, S. C. Moratti, R. H. Friend, Synth. Met. 80, 119 (1996).
    40.H. Becker, A. Lux, A. B. Holmes, R. H. Friend, Synth. Met. 85, 1289 (1997).
    41.H. Becker, S. E. Burns, R. H. Friend, Phys. Rev. B, 56, 1893 (1997).
    42.P. W. M. Blom, M. C. J. M. Vissenberg, J. N. Huiberts, H. C. F. Martens, H. F. M. Schoo, Appl. Phys. Lett. 77, 2057 (2000).
    43.T. P. Nguyen, J. L. Mansot, Thin Solid Films, 283, 135 (1996).
    44.S. J. Ding, Q. Q. Zhang, D. W. Zhang, J. T. Wang, Y. D. Zhou, W. W. Lee, Appl. Surf. Sci. 178, 140 (2001).

    下載圖示 校內:2010-07-06公開
    校外:2012-07-06公開
    QR CODE