簡易檢索 / 詳目顯示

研究生: 王忠斌
Wang, Jung-Bin
論文名稱: 非Abel幾何相與四元數Hopf纖維化
Non-abelian Geometric Phase and Quaternionic Hopf Fibration
指導教授: 許祖斌
Soo, Cho-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 38
中文關鍵詞: 幾何相四元數Hopf纖維化
外文關鍵詞: geometric phase, quaternion, Hopf fibration
相關次數: 點閱:49下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過四元數Hopf纖維化S^(4l+3)/S^3≅〖"HP" 〗^l,我們研究了任意偶數維SU(2)量子幾何相。量子態重疊函數的Schrӧdinger演化透過用基空間和纖維的座標的表達顯現出SU(2)幾何相〖"T" e〗^(-i∫_0^T▒Adt)和動力相"T" e^(i/ℏ ∫_0^T▒〖"H" dt〗)。所得的公式是複數Hopf纖維化S^(2N+1)/S^1≅〖"CP" 〗^N的U(1)幾何相在四元數Hopf纖維化的SU(2)類比。這些成果適用於任意Hamiltonian和任意偶數維的量子態,也是在沒有作絕熱近似條件下對於開放或封閉演化路徑都有效。我們用S^7/S^3≅〖"HP" 〗^1作為一個例子在三種不同看法下得到: (1)BPST 瞬間子的幾何基礎S^7/SU(2)≅S^4,(2)交換的複數Hopf纖維化 S^7/U(1)≅〖"CP" 〗^3,以及(3)一個雙量子位元系統的糾纏態空間為S^7[S^3xS^3]。我們討論了這些看法之間的關係以及瞬間子和糾纏參數兩者的精確對應,也討論了廣義的Wilczek-Zee幾何相,且示範了四元數SU(2)幾何聯絡及其和Wilczek-Zee-Berry聯絡的關係。

    Exact non-abelian geometric phase for arbitrary even-dimensional quantum systems is investigated through quaternionic Hopf fibrations S^(4l+3)/S^3≅HP^l. Time evolution according to Schrӧdinger equation of the generic state is expressed in terms of quaternionic base manifold and fiber coordinates, and the non-abelian phase factor, Te^(-i∫_0^T A dt), as well as the quaternionic analog of the dynamical phase factor, Te^(i/ℏ ∫_0^T H dt), are manifested in the overlap function. The formula derived is the non-abelian quaternionic Hopf fibration S^(4l+3)/S^3≅HP^l analog of the abelian geometric phase construction of the complex Hopf fibration S^(2N+1)/S^1≅CP^N. The result obtained holds for arbitrary even-dimensional systems which obey Schrӧdinger evolution with arbitrary Hamiltonian, and is valid without adiabatic approximation for both closed and also open paths. S^7/S^3≅HP^1 is discussed as an explicit example viewed from three different perspectives: (1) S^7/SU(2)≅S^4 as the geometrical basis of the Belavin-Polyakov-Schwartz-Tyupkin instanton, (2) S^7 as the Hilbert space of a 4-state system for the abelian complex Hopf fibration S^7/U(1)≅CP^3, and (3) as the Hilbert space of a bipartite qubit-qubit system with the space of entangled states identified with S^7[S^3×S^3]. Explicit relations between these constructions are discussed and the precise correspondence between instanton parameter and entanglement is also clarified. The derivation of non-abelian Wilczek-Zee phase is carried out in a general context and explicit illustrations of the exact non-abelian SU(2) geometric connection and its relation to the Wilczek-Zee-Berry connection is provided.

    1 Introduction and overview 3 2 Geometry of Hilbert space 6 2.1 Quaternionic projective space HP^l and its explicit parametrization by inhomogeneous coordinates {h^alpha_eta} . . . . . . . . . . . . . . . . . . . . . 7 2.2 Quaternionic Hopf fibration S^(4l+3)/SU(2)≅HP^l . . . . . . . . . . . . . 7 3 Schrödinger evolution of physical state 9 3.1 Relation between gauge potentials A_{CP^{2l+1}} and A_{HP^l} of abelian and non-abelian Hopf fibrations . . . . . . . . . . . . . . . . . . . . . . . . 14 4 An explicit example: generic four-state systems 15 4.1 Explicit parametrization of S^7 . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Quaternionic Hopf fibration S^7/S^3≅HP^1 . . . . . . . . . . . . . . . . 16 4.3 Complex Hopf fibration S^7/S^1≅CP^3 . . . . . . . . . . . . . . . . . . 19 4.4 Entangled states parametrized by S^7[S^3×S^3] . . . . . . . . . . . . . 20 4.5 Qubit-qubit bipartite system with spin-spin interaction . . . . . . . . . 22 5 Generalization of Wilczek-Zee non-abelian geometric phase 25 5.1 Adiabatic limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Summary 34 A Algebra of quaternions 35 B Geometry of quaternionic Hopf fibration 36 References 38

    [1] J. Anandan, J. Christian, and K. Wanelik, Am. J. Phys. 65, 180 (1997)
    [2] M. V. Berry, Proc. R. Soc. Lond. A 392, 45-57 (1984).
    [3] See, for instance, A. Messiah, Quantum Mechanics (Dover Ed. (1999)), pg. 744-755.
    [4] B. Simon, Phys. Rev. Lett. 51, 2167-2170 (1983).
    [5] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111-2114 (1984).
    [6] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593-1596 (1987).
    [7] J. Anandan, Phys. Lett. A 133, 171-175 (1988).
    [8] S. L. Adler, J. Anandan, Found. Phys. 26, 1579-1589 (1996).
    [9] D. N. Page, Phys. Rev. A 36, 3479-3481 (1987).
    [10] A study of the geometric phase in quantum mechanics, Huei-Chen Lin, M. Sc. thesis, Dept. of Physics, National Cheng Kung University (2009).
    [11] H. Hopf, Mathematische Annalen, 104, 637-665 (1931).
    [12] A. A. Belavin, A. M. Polyakov, A. S. Schwartz, Yu. S. Tyupkin, Phys. Lett. B 59, 85-87 (1975).
    [13] A. Trautman, Int. J. Theor. Phys. 8 16, 561-565 (1977).
    [14] A study of the Clauser-Horne-Shimony-Holt relation, Kai-Siang Neo, M. Sc. thesis, Dept. of Physics, National Cheng Kung University (2005); Qubit-qubit entanglement and its analysis, Chang-Kuo Liang, M. Sc. thesis, Dept. of Physics, National Cheng Kung University (2010).
    [15] P. Levay, J. Phys. A Math. Gen. 37, 1821-1841 (2004).
    [16] W. R. Hamilton, Philosophical Magazine, 3 25 169, 489-495 (1844).
    [17] Elements of Quaternions, W. R. Hamilton and W. E. Hamilton(editor) (University of Dublin Press, (1866)).

    下載圖示 校內:2013-09-01公開
    校外:2013-09-01公開
    QR CODE