簡易檢索 / 詳目顯示

研究生: 藍承炫
Lan, Cheng-Hsuan
論文名稱: 探討影響學生對雲端教室轉換意圖之因素
Exploring factors that influence students’ intention to switch cloud classroom
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 50
中文關鍵詞: 雲端教室轉換意圖感知便利性轉換成本
外文關鍵詞: cloud classroom, intention to switch, Perceived Convenience, Switching Cost
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雲端教室是應用於教育的一種創新雲端服務。由虛擬桌面基礎架構技術所構成,為學生打造了一個具有便利性、相容性的使用環境。過去學生要使用教育機構所提供的軟體,只能在上課中或被迫留在校園內透過傳統的電腦教室去使用它,一旦離開校園就無法使用它去進行學習,所以造成軟體使用上很大的使用限制與學習困境。雲端教室的出現解決了這個問題,當學生轉換至雲端教室使用後,不但解決校園內軟體無法跨越時空去使用,或因學生自身硬體支援不足被限制無法使用的問題,學生可以不受限制的使用,讓課後學習得以延續。由此可見,讓學生轉換至雲端教室學習的重要性。因此本研究以學生觀點,來探討影響學生對雲端教室轉換意圖的關鍵因素。研究中採用科技接受理論(TAM)結合創新擴散理論(IDT),並依據雲端教室之特性與優勢加入感知便利性(Perceived Convenience)、轉換成本(Switching Cost)等因素,去建立相關研究模型與相關假說。研究經實證與分析,結果發現:(1)相容性是直接影響學生對雲端教室轉換意圖最重要的影響因素,其次是轉換成本因素。(2)感知易用性是學生對雲端教室轉換態度最重要的影響因素。(3)感知易用性影響學生對雲端教室轉換態度比感知有用性影響更顯著。

    Cloud Classroom is an innovative cloud service for education. It is composed of the Virtual Desktop Infra-structure (VDI) technology to create a convenient and compatible environment for students. Previously, in order to use the authorized software provided by educational institutions, students have to use in the classroom or stay in the campus via traditional computer classrooms. When students leave the campus, they could not use, resulting in restrictions on use and interruption of learning. Cloud classrooms solve this problem. When students switch to the use of the cloud classroom, not only the problem of the unavailability of the campus license software across time and place but the hardware support of the students is solved. This all allows students to use without any restriction so they can continue to learn. It is clear that it is important for students to switch to the cloud classroom. This study explores the key factors that affect students' intentions for cloud classroom conversions from students’ perspective. This study adopts the technology acceptance model(TAM) combined with the innovative diffusion theory(IDT), and Perceived Convenience, Switching Cost, etc are considered based on the characteristics and advantages of the cloud classroom to establish research models and relevant hypotheses. The results show that: (1) compatibility is the most important influencing factor of students' intention to switch to cloud classroom, followed by switch cost. (2) perceived ease of use is the most important factor for students to switch their attitude of the cloud classroom . (3) perceived ease of use affects students on cloud classroom switching attitude much more than perceived usefulness.

    摘要 I Extended Abstract II 誌謝 V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 5 第三節 研究問題 5 第二章 文獻探討 6 第一節 雲端服務 6 第二節 轉換意圖 9 第三節 科技接受模式(Technology Acceptance Model, TAM) 11 第四節 創新擴散理論 (Innovation Diffusion Theory, IDT) 14 第五節 轉換成本(Switch Cost) 17 第三章 研究方法 19 第一節 研究架構 19 第二節 研究假說 20 第三節 實驗平台與流程 22 第四節 研究樣本 26 第五節 問卷設計 26 第四章 資料分析與結果 29 第一節 測量模型分析 29 4.1.1 信度分析 29 4.1.2 效度分析 30 第二節 結構模型分析 34 4.2.1 假說檢定 34 4.2.2 效果分析 36 4.2.3 研究討論 36 第五章 結論與建議 39 第一節 結論 39 第二節 研究貢獻 40 第三節 研究限制與未來建議 41 參考文獻 42 附錄一、研究問卷 48

    Al-Gahtani, S. S. (2016). Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Applied Computing and Informatics, 12(1), 27-50.
    Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115.
    Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of marketing, 66(3), 1-17.
    Bhattacherjee, A., Limayem, M., & Cheung, C. M. (2012). User switching of information technology:A theoretical synthesis and empirical test. Information & Management, 49(7), 327-333.
    Brown, L. G. (1990). Convenience in services marketing. The Journal of Services Marketing, 4(1), 53-59.
    Burnham, T.A., Frels, J.K. & Mahajan, V. (2003). Consumer Switching Costs: A Typology, Antecedents, and Consequences. Journal of the Academy of Marketing Science, 31(2), 109-126.
    Chang, S. C., & Tung, F. C. (2008). An empirical investigation of students’ behavioural intentions to use the online learning course websites. British Journal of Educational Technology, 39(1), 71-83.
    Chen, C. C., & Huang, T. C. (2012). Learning in a u-Museum: Developing a context-aware ubiquitous learning environment. Computers & Education, 59(3), 873-883.
    Chen, Y. Lin, Y., Yeh, R., Lou S. (2013). Examining factors affecting college students’ intention to use web-based instruction systems: towards an integrated model. Turkish Online Journal of Educational Technology-TOJET, 12(2), 111-121.
    Cheng, Z. Yang, Y. & John, L. (2009). Cyber Migration: an empirical investigation on factors that affect users’ switch intentions in social networking sites. Proceedings of the 42nd Hawaii International Conference on System Sciences, Hawaii, USA.
    Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research, 1(1), 307-341.
    Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
    Davis, F. D., Bagozzi, R.P. and Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003.
    Duan, Y., He, Q., Feng, W., Li, D., & Fu, Z. (2010). A study on e-learning take-up intention from an innovation adoption perspective: A case in China. Computers & Education, 55(1), 237-246.
    Eastin, M. S. (2002). Diffusion of e-commerce: An analysis of the adoption of four e-commerce activities. Telematics and Informatics, 19(3), 251-267.
    Fang, Y. H., & Tang, K. (2017). Involuntary migration in cyberspaces: The case of msn messenger discontinuation. Telematics and Informatics, 34(1), 77-193.
    Fornell, C. & Larcker, D. F. (1981). Evaluation Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
    Freeman, M., Bell, A., Comerton-Forde, C., Pickering, J., & Blayney, P. (2007). Factors affecting educational innovation with in class electronic response systems. Australasian Journal of Educational Technology, 23(2).
    Ganesh, J., Arnold, M. J. & Reynolds, K. E. (2000). Understanding the customer base of service providers: an examination of the differences between switchers and stayers. Journal of Marketing, 64, 65-87.
    Gonzalez-Martínez, J. A., Bote-Lorenzo, M. L., Gomez-S anchez, E., & Cano-Parra, R. (2015). Cloud computing and education: a state-of-the-art survey. Computers & Education, 80, 132-151.
    Hardgrave, B., Davis, F., & Riemenschneider, C. (2003). Investigating Determinants of Software Developers’ Intentions to Follow Methodologies. Journal of Management Information Systems, 20(1), 123-151.
    Hsieh, J. K., Hsieh, Y. C., Chiu, H. C., & Feng, Y. C. (2012). Post-adoption switching behavior for online service substitutes: A perspective of the Maldives: International Economics Development and Research Center. pushepullemooring framework. Computers in Human Behavior, 28(5), 1912-1920.
    Hsieh, Y. C., Hsieh, J. K., & Feng, Y. C. (2011). Switching between social media: The role of motivation and cost. In Proceedings of international conference on economics, business and management (pp. 92-96).
    Hsu, H. H. , Chang ,Y. Y. (2013). Extended TAM model: impacts of convenience on acceptance and use of Moodle. US-China Education Review 3, 211-218.
    Huang, Y. M. (2016). The factors that predispose students to continuously use cloud services: Social and technological perspectives. Computers & Education, 97, 86-96.
    Huang, Y. M., Huang, Y. M., Huang, S. H., & Lin, Y. T. (2012). A ubiquitous English vocabulary learning system: Evidence of active/passive attitudes vs. usefulness/ease-of-use. Computers & Education, 58(1), 273-282.
    Huang, Y. M., Wang, C. S., & Liu, Y. C. (2015). A Study of Synchronous vs. Asynchronous Collaborative Design in Students" Learning Motivation. International Journal of Information and Education Technology, 5(5), 354.
    Huang, Y. M., Wang, C. S., Guo, J. Z., Shih, H. Y., & Chen, Y. S. (2013). Advancing collaborative learning with cloud service. In Information Technology Convergence ,. 717-722.
    Jackson, B.B. (1985). Build Customer Relationships that Last. Harvard Business Review, 63(6), 120-128.
    Karahanna, E., Straub, D. W. & Chervany, N. L. (1999). Information Technology Adoption Across Times: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs. MIS Quarterly, 23(2), 183-213.
    Keaveney, Susan M. (1995). Customer Switching Behavior in Service Industries: An Exploratory Study. Journal of Marketing, 59, 71-82.
    Kim, D., & Ammeter, T. (2014). Predicting personal information system adoption using an integrated diffusion model. Information & management, 51(4), 451-464.
    Kim, H. W., & Kankanhalli, A. (2009). Investigating user resistance to information systems implementation: A status quo bias perspective. MIS Quarterly, 33(3), 567-582.
    Kim, H. J., Lee, J. M., & Rha, J. Y. (2017). Understanding the role of user resistance on mobile learning usage among university students. Computers & Education,113,108-118
    Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.
    Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12, 752-780.
    Lee, Y. H., Hsiao, C., Purnomo, S. H. (2014). An empirical examination of individual and system characteristics on enhancing e-learning acceptance. Australasian Journal of Educational Technology, 30 (5), 561-579.
    Lee, Y. H., Hsieh, Y. C., & Hsu, C. N. (2011). Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to use E-Learning Systems. Educational Technology & Society, 14(4), 124-137.
    Liao, Y. W., Huang, Y. M., Chen, H. C., & Huang, S. H. (2015). Exploring the antecedents of collaborative learning performance over social networking sites in a ubiquitous learning context. Computers in Human Behavior, 43, 313-323.
    Liao, Z., Cheung, M. T. (2002). Internet-based e-banking and consumer attitudes: an empirical study, Information & Management ,39 (4), 283¬¬¬-295.
    Lin, C (2012). A Novel College Network Resource Management Method using Cloud Computing. Physics Procedia, 24, 2293-2297.
    Lin, T. C., Cheng, H. K., Wang, F. S., & Chang, K. J. (2012). A study of online auctionsellers' intention to switch platform: The case of yahoo! Kimo versus ruten_ebay. Decision Sciences, 43(2), 241-272.
    Liu, Y. C., & Huang, Y. M. (2015). Using the UTAUT Model to Examine the Acceptance Behavior of Synchronous Collaboration to Support Peer Translation. JALT CALL Journal, 11(1), 77-91.
    Lunsford, D. L. (2009). Virtualization technologies in information systems education. Journal of Information Systems Education, 20(3), 339.
    Lu, J., Yu, Chun-Sheng., Liu, C. & Yao, J. E. (2003). Technology Acceptance Model for Wireless Internet. Internet Research: Electronic Networking Applications and Policy, 13(3), 206-222.
    McDonald, D., Breslin, C., & MacDonald, A. (2010). Final report from the JISC review of the environmental and organisational implications of cloud computing in higher and further education. Technical Report, University of Strathclyde.
    Miller, K. & Pegah, M. (2007). Virtualization: Virtually at the desktop. In Proceedings of the 35th Annual ACM SIGUCCS Conference on User Services(pp. 255-260).
    Moore, G. C. & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222.
    Nunnally, J. C. (1978). Psychometric theory. 2nd Edition, McGraw-Hill, New York.
    Polites, G. L., & Karahanna, E. (2012). Shackled to the status quo: The inhibiting effects of incumbent system habit, switching costs, and inertia on new system acceptance. MIS Quarterly, 36(1), 21-42.
    Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585-1604.
    Rogers, E. M. (2003). Diffusion of Innovations. Fifth Edition. The Free Press, New York.
    Shiau, W. L., & Chau, P. Y. (2016). Understanding behavioral intention to use a cloud computing classroom: A multiple model comparison approach. Information & Management, 53(3), 355-365.
    Sohail, M. S. & Shanmugham, B. (2003). E-banking and customer preference in malaysia: an empirical investiga-tion. Information Sciences, 150, 207-217.
    Su, K. W., Chen, C. N., Kuo, N. H., Tseng, H. H. (2014). Applying TAM Model to Evaluate the Indoor Parking Guidance and Information System. Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, IMECS. Hong Kong.
    Sultan, N. (2010). Cloud computing for education: a new dawn?. International Journal of Information Management, 30, 109-16.
    Tan, M. & Teo T. S. H. (2000). Factors Influencing the Adoption of Internet Banking. Journal of Association for Information Systems, 1(5), 1-42.
    Tang, J. & Chiang, C. (2009). Towards an understanding of the behavioral intention to use mobile knowledge management. WSEAS Transactions on Information Science and Applications, 6, 1601-1613.
    Tarhini, A., Hone, K., Liu X. (2014). The effects of individual differences on e-learning users’ behaviour in developing countries: a structural equation model. Computers in Human Behavior, 41, 153-163.
    Tornatzky, L. G. & Klein, K. J. (1982). Innovation Characteristics and Innovation Adoption-Implementation: A Meta-Analysis of Findings. IEEE Transactions on Engineering Management, 29(1), 28-43.
    Truong, D. (2010). How Cloud Computing Enhances Competitive Advantages: A Research Model for Small Businesses. The Business Review, Cambridge, 15(1), 59-65.
    Tseng, F. C., & Teng, C. I. (2014). Antecedents for user intention to adopt another auction site. Internet Research, 24(2), 205-222.
    Tuncay, E. (2010). Effective use of cloud computing in educational institutions. Proscenia Social and Behavioral Sciences, 2, 938-42.
    Van Slyke, C., Lou, H. & Day, J. (2002). The Impact of Perceived Innovation Characteristics on Intention to use Groupware, Information Resources Management Journal 15(1), 5-12.
    Venkatesh, V. & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273-315.
    Venkatesh, V. & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204.
    Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.
    Vouk, M. A. (2008). Cloud Computing-Issues, Research and Implementations. Journa of Computing and Information Technology, 16(4), 245-246.
    Wang, C. S., & Huang, Y. M. (2016). Acceptance of cloud services in face-to-face computer-supported collaborative learning: a comparison between single-user mode and multi-user mode. Innovations in Education and Teaching International, 53(6), 637-648.
    Wu, T. T. (2013). Using mobile annotation system in public health practice course based on project-based learning. In Advances in Intelligent Systems and Applications-Volume 1 349-357. Springer Berlin Heidelberg.
    Wu, T. T. (2014). Using smart mobile devices in social-network-based health education practice: a learning behavior analysis. Nurse education today, 34(6), 958-963.
    Wu, C. F., & Huang, L. P. (2011). Developing the environment of information technology education using cloud computing infrastructure. American Journal of Applied Sciences, 8(9), 864-871.
    Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information Management, 42, 719-729.
    Ye, C., & Potter, R. (2007). The role of habit in post-adoption switching of personal information technologies: A push, pull and mooring model. In DIGIT 2007 proceedings (p.7).
    Ye, C., & Potter, R. (2011). The role of habit in post-adoption switching of personal information technologies: An empirical investigation. Communications of the Association for Information Systems, 28(1), 585-610.
    Ye, C., Seo, D., Desouza, K. C., Sangareddy, S. P., & Jha, S. (2008). Influences of it substitutes and user experience on post-adoption user switching: An empirical investigation. Journal of the American Society for Information Science and Technology, 59(13), 2115-2132.
    Ye, C., Seo, D., Desouza, K., Papagari, S. ,Jha, S. (2006). Post-adoption switching between technology substitutes: the case of web browsers. Twenty-Seventh International Conference on Information Systems, Milwaukee, Wisconsin, USA.
    Yi, M. Y., Jackson, J. D., Park, J. S. & Probst, J. C. (2006). Understanding Information Technology Acceptance by Individual Professionals: Toward an Integrative View. Information & Management, 43(3), 350-363.
    Yoon, C. & Kim, S. (2007). Convenience and TAM in a Ubiquitous Computing Environment: The Case of Wireless LAN. Electronic Commerce Research and Applications, 6(1), 102-112.
    Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud Computing: State-of-the-Art and Research Challenges. Journal of Internet Services and Applications, 1(1), 7-18.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE