簡易檢索 / 詳目顯示

研究生: 鍾校木
Cheng, Siao-Muk
論文名稱: 存活素抑制劑YM155在乳癌中的功能評估和機制探討
Function evaluation and mechanistic insight of the survivin suppressant, YM155, in breast cancer cells
指導教授: 張雋曦
Cheung, Chun Hei Antonio
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 146
中文關鍵詞: 乳癌存活素自噬作用DNA損傷ROS
外文關鍵詞: Breast cancer, Survivin, Autophagy, DNA damage, ROS
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儘管荷爾蒙療法,標靶療法和化學療法已被證實對於各種不同乳癌亞型(管狀A/B,HER2擴增型,類基底細胞型/緊密連接蛋白低表達型)具有療效,但目前的乳癌治療方式仍有一些限制與副作用。因此,開發針對不同類型乳癌的新策略是重要的。

    存活素(BIRC5)是抗凋亡蛋白家族(IAPs)之一員。在分子層次上,存活素可通過直接/間接的方式與半胱氨酸蛋白酶(caspase)結合進而抑制細胞凋亡,並且也可以在細胞中形成染色體載體複合物(chromosomal passenger complex)以促進有絲分裂。然而,與其他IAP家族成員不同的是,存活素主要在胚胎發育過程的胚胎細胞中表達,但並不在已分化的正常組織中表達。有趣的是,存活素在不同類型的癌細胞中具有高度表達的情形並已證實高表達的存活素會促進腫瘤發生與腫瘤轉移,使得這個分子有希望成為治療癌症的標靶分子。

    Sepantromium bromide (YM155) 是存活素蛋白的小分子抑制劑。儘管YM155已經達到第I/II期臨床試驗,但其分子作用機轉仍然不明確。YM155是否適用於治療不同的乳癌亞型(包括不同類型的抗藥亞型)仍然不清楚。在我們的初步研究顯示YM155在雌激素受體陽性,管狀A型的MCF-7乳癌細胞中和MCF-7 衍生出的抗泰莫西芬,雌激素非依賴性的乳癌細胞中同樣有效。此外,YM155也可以低納摩爾濃度有效的標定三陰性,緊密連接蛋白低表達型的MDA-MB-231細胞。然而,YM155在乳癌中的詳細分子機轉仍未清楚。本研究主要目的是要探討YM155在不同類型的乳癌細胞中所誘發之細胞死亡的詳細機轉。

    在這項研究中,儘管存活素很少被證實能夠調控細胞自噬作用,我們發現使用YM155和小分子干擾核醣核酸抑制存活素的表達時,在人類乳癌細胞MCF-7 (半胱天東酶缺乏型),MDA-MB-231 (半胱天東酶酶表現型)和SK-Br-3 (HER2,半胱天東酶酶表現型)中會促使自噬作用的發生,並且也會誘導自噬依賴性,但不依賴半胱氨酸蛋白酶的細胞死亡。儘管自噬作用的上調已被廣泛的證明可以促進癌細胞中DNA的修復以應付不同種類的DNA損傷劑,令人驚訝的是,我們發現YM155和存活素的小分子干擾核醣核酸在所有的檢測的乳癌亞型中會誘導早期的自噬依賴性ROS 產生/積累,並且也會導致自噬-ROS依賴性的DNA 損傷。除此之外,通過與ROS抑制劑Tiron共同治療時部分減弱了YM155所誘導的自噬作用,表明可能存在“自噬-ROS-自噬”正回饋迴路,並且可以通過YM155和存活素的小分子干擾核醣核酸在乳癌細胞中激活。有趣的是,在乳癌細胞中,YM155的長時間治療和存活素的小分子干擾核醣核酸會降低各種DNA雙股斷裂修復蛋白,包括Mre11,Rad51和Rad54L在蛋白和基因轉錄的表達。回溯性統計分析進一步揭示了在不同的資料庫中,在正常乳腺組織和乳腺腫瘤組織中,存活素,Rad51和Rad54L之間的表達呈正相關。在本次的研究結果表明,YM155會部分透過上調自噬依賴-ROS 產生/積累和干擾同源性DNA修復過程進而誘導DNA損傷和乳癌細胞死亡。目前的研究結果也顯示存活素可能在癌細胞中存在著尚未發現的自噬作用調節/DNA完整性維護的功能。

    Despite hormone therapy, targeted therapy and chemotherapy have been shown to be effective in targeting different breast cancer subtypes (luminal A/B, HER2-enriched, basal/claudin-low), the current breast cancer treatment still have several limitations and undesired side-effects. Thus, it is important to develop novel strategies to target different types of breast cancer.

    Survivin (BIRC5) is a member of the inhibitor-of-apoptosis proteins (IAPs) family. At the molecular level, it inhibits apoptosis through direct/indirect caspases-inhibition and promotes mitosis through formation of chromosomal passenger complex in cells. However, unlike other members of the IAPs family, survivin is mainly expressed in embryonic cells during fetal development, but not in the differentiated normal tissues, under physiological conditions. Interestingly, survivin in highly expressed in different cancer cell types and overexpression has widely been demonstrated to promote tumorigenesis and tumor metastasis, making this molecule a promising molecular target for cancer therapy.

    Sepantromium bromide (YM155) is a small molecule expression suppressant of survivin. Despite YM155 has reached phase I/II clinical studies, its molecular mechanism of action is still remains unclear. Regarding to breast cancer, it is also unclear on whether YM155 is applicable for treating different breast cancer subtypes (including different drug-resistance subtypes). Our preliminary study revealed that YM155 is equally effective in targeting the estrogen receptor positive (ER+), luminal A-like, MCF-7 breast cancer cells and the MCF-7 derived tamoxifen-resistant, estrogen-independent, breast cancer cells in vitro. It is also effective in targeting the triple-negative, claudin-low-like, MDA-MB-231 cells at low nano-molar concentrations. However, the detail molecular mechanism of action of YM155 on breast cancers remains unclear. The main purpose of this study is to determine the detail mechanism (or differential mechanisms) of action of YM155 in inducing the death of different breast cancer cells.

    In this study, despite survivin has seldom been demonstrated to be capable of regulating cell autophagy, we found that YM155 and downregulation of survivin by siRNA both upregulated autophagy and induced autophagy-dependent, but caspase-independent, cell death in human breast MCF-7 (caspase-3 deficient), MDA-MB-231 (caspase-3 expressing), and SK-Br-3 (HER-2 enriched, caspase-3 expressing) cancer cells. Even though upregulation of autophagy has widely been demonstrated to promote DNA repair in cancer cells in response to different DNA damaging agents, surprisingly, we observed that YM155 and survivin siRNA induced early autophagy-dependent ROS production/accumulation and the autophagic-ROS-dependent DNA damage in all of the examined breast cancer subtypes. Moreover, ROS scavenging by co-incubation with Tiron partially attenuated YM155-induced autophagy, suggesting that an “autophagy-ROS-autophagy” positive feedback loop may be exist and can be activated by YM155 and survivin siRNA in breast cancer cells. Interestingly, prolonged YM155 treatment and survivin siRNA also decreased the expression of various DNA double strand break repair proteins including Mre11, Rad51 and Rad54L at both the protein expression and the gene transcription levels in breast cancer cells. Retrospective statistical analysis further revealed that a positive correlation in the expression between survivin, Rad51, and Rad54L in normal breast tissues and breast tumor tissues in different cohorts. In conclusion, findings of this study reveal that YM155 induces DNA damage and breast cancer cell death in part through upregulation of the autophagic-ROS production/accumulation and interferes with the homologous DNA repair process. Findings of the current study also suggest that survivin may exhibit a yet-to-be discovered autophagic regulating/DNA integrity maintaining function in cancer cells.

    中文摘要 I ABSTRACT IV 致謝 VIII Abbreviation IX List of Tables XII List of Figures XIII List of Appendices XVII Chapter 1 - INTRODUCTION 1 1.1 Breast cancer 2 1.1.1 The epidemiology of breast cancer 2 1.1.2 Current treatments of breast cancer 2 1.1.3 Disadvantages of the current clinical therapies of breast cancer 4 1.2 Apoptosis 6 1.2.1 Mechanism of apoptosis 6 1.3 The IAPs family 7 1.3.1 General introduction 7 1.3.2 Survivin 8 1.3.3 The regulation of survivin 9 1.3.4 Functions of survivin 10 1.3.5 Survivin and cancer 11 1.3.6 Current developments in survivin-targeted therapy 12 1.4 Survivin small molecule modulator - Sepantronium bromide (YM155) 14 1.4.1 Mechanism of YM155 14 1.4.2 Clinical studies of YM155 15 1.5 Autophagy 15 1.5.1 Introduction 15 1.5.2 Autophagy and cancer 18 1.6 Reactive Oxygen Species (ROS) 18 1.6.1 Introduction 18 1.6.2 The source of ROS 19 1.6.3 Excessive ROS-induced autophagic cell death 20 1.7 DNA damage and repair 21 1.7.1 Introduction 21 1.7.2 DNA double strand breaks 22 1.7.3 Recent findings on the DNA repair role of survivin 23 1.8 Aims of this study 24 Chapter 2 - MATERIALS AND METHODS 25 2.1 Materials 26 2.1 Materials 26 2.2 Methods 29 2.2.1 Cells and culture 29 2.2.2 MTT cells viability assay 29 2.2.3 Lactate dehydrogenase (LDH)-cytotoxicity assay 30 2.2.4 Reverse transcription-PCR (RT-PCR) and real-time PCR 30 2.2.5 Plasmid DNA preparation and transfection 31 2.2.6 Gene silencing by siRNA 31 2.2.7 Western blot analysis 32 2.2.8 Protein stability assay 32 2.2.9 Comet assay 33 2.2.10 Immunofluorescence 34 2.2.11 Ectopic expression of EGFP-LC3B and detection of autophagosome formation 34 2.2.12 Monodansylcadavirine (MDC) and Lysotracker® Red staining of acidic vesicular organelles 34 2.2.13 Dihydroethidium (DHE) staining - detection of intracellular superoxide formation 35 2.2.14 MitosoxTM Red staining - detection of mitochondrial superoxide formation 36 2.3.15 Statistic analysis 37 Chapter 3 - RESULTS 38 Part one: YM155 down-regulates survivin and XIAP, modulates autophagy, and induces autophagy-dependent DNA damage in breast cancer cells. 39 3.1.1 YM155 is effective in targeting breast cancer cells of different subtypes 39 3.1.2 Downregulation of survivin by YM155 and siRNA induces caspase-3-independent cell death in breast cancer cells 39 3.1.3 Downregulation of survivin by YM155 and siRNA induces DNA damage in breast cancer cells 40 3.1.4 YM155 and survivin siRNA modulate autophagy in breast cancer cells 41 3.1.5 YM155 induces biphasic expressions of p62/SQSTM1 42 3.1.6 YM155 induces autophagic cell death in breast cancer cells 44 3.1.7 YM155 down-regulates the expression of XIAP in breast cancer cells 45 3.1.8 YM155 and survivin siRNA induce autophagy-dependent DNA damage in breast cancer cells 45 Part two: Targeting survivin induces autophagy-ROS related DNA damage and homologous recombination impairment in breast cancer cells. 47 3.2.1 YM155 and survivin siRNA induce autophagy-dependent ROS accumulation in breast cancer cells 47 3.2.2 YM155 induces autophagic ROS-dependent DNA damage in breast cancer cells 49 3.2.3 YM155-increased ROS production/accumulation promotes autophagy in breast cancer cells 49 3.2.4 UVC at a sub-lethal intensity induces DNA double-strand breaks, survivin upregulation and nuclear localization in MDA-MB-231 cells 50 3.2.5 Survivin expression shows a positive-correlation with various homologous recombination-involved proteins in human clinical samples 51 3.2.6 YM155 and survivin siRNA inhibit homologous recombination in cancer cells 51 3.2.7 Downregulation of Rad51 and Rad54L increase the formation of LC3B puncta in breast cancer cells 53 Chapter 4 – Discussion and Conclusions 55 4.1 Discussion 55 4.1.1 Brief summary 55 4.1.2 Survivin is a novel autophagy modulator and targeting survivin by YM155 induces autophagy in breast cancer cells 55 4.1.3 Survivin is a DNA integrity stabilizer and YM155 induces early autophagic ROS-dependent DNA damage in breast cancer cells 57 4.1.4 YM155 induces DNA damage in part through downregulation of Rad51 and Rad54L 59 4.2 Conclusions 61 Chapter 5 - REFERENCES 63 Chapter 6 - TABLES 77 Chapter 7 - FIGURES 81 Chapter 8 –APPENDICES 138 Curriculum vitae 147

    Ambrosini G, Adida C, Altieri DC. 1997. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917-921.

    Arriagada R, L6 MG, Rochard F. 1996. Conservative treatment versus mastectomy in early breast cancer: Patterns of failure with 15 years of follow-up data. Institut Gustave-Roussy Breast Cancer Group. Journal of Clinical Oncology 14:1558-1564.

    Arribas J, Baselga J, Pedersen K, Parra-Palau JL. 2011. p95HER2 and breast cancer. Cancer Res 71:1515-1519.

    Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245-313.

    Bernstein C, R A, Nfonsam V, Bernstei H. 2013. DNA Damage, DNA Repair and Cancer.
    Berthelet J, Dubrez L. 2013. Regulation of Apoptosis by Inhibitors of Apoptosis (IAPs). Cells 2:163-187.

    Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603-614.

    Brand MD. 2016. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14-31.

    Brewer TF, Garcia FJ, Onak CS, Carroll KS, Chang CJ. 2015. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu Rev Biochem 84:765-790.

    Bristow RG, Hill RP. 2008. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8:180-192.

    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462-42467.

    Cancer Genome Atlas N. 2012. Comprehensive molecular portraits of human breast tumours. Nature 490:61-70.

    Cannan WJ, Pederson DS. 2016. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 231:3-14.

    Capalbo G, Dittmann K, Weiss C, Reichert S, Hausmann E, Rodel C, Rodel F. 2010. Radiation-induced survivin nuclear accumulation is linked to DNA damage repair. Int J Radiat Oncol Biol Phys 77:226-234.

    Capelan M, Pugliano L, De Azambuja E, Bozovic I, Saini KS, Sotiriou C, Loi S, Piccart-Gebhart MJ. 2013. Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann Oncol 24:273-282.

    Carpten JD, et al. 2007. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448:439-444.

    Carrasco RA, Stamm NB, Marcusson E, Sandusky G, Iversen P, Patel BK. 2011. Antisense inhibition of survivin expression as a cancer therapeutic. Mol Cancer Ther 10:221-232.

    Castino R, Bellio N, Follo C, Murphy D, Isidoro C. 2010. Inhibition of PI3k class III-dependent autophagy prevents apoptosis and necrosis by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci 117:152-162.

    Chang BH, et al. 2015. YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. J Hematol Oncol 8:39.

    Chang M. 2012. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul) 20:256-267.

    Chantalat L, Skoufias DA, Kleman JP, Jung B, Dideberg O, Margolis RL. 2000. Crystal structure of human survivin reveals a bow tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell 6:183-189.

    Chen P, Zhu J, Liu DY, Li HY, Xu N, Hou M. 2014. Over-expression of survivin and VEGF in small-cell lung cancer may predict the poorer prognosis. Med Oncol 31:775.

    Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. 2007. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155-4166.

    Cheng Q, Ling X, Haller A, Nakahara T, Yamanaka K, Kita A, Koutoku H, Takeuchi M, Brattain MG, Li F. 2012. Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter. Int J Biochem Mol Biol 3:179-197.

    Cheung CH, Chen HH, Cheng LT, Lyu KW, Kanwar JR, Chang JY. 2010. Targeting Hsp90 with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, survivin, in human A549, HONE-1 and HT-29 cancer cells. Mol Cancer 9:77.

    Cheung CH, Huang CC, Tsai FY, Lee JY, Cheng SM, Chang YC, Huang YC, Chen SH, Chang JY. 2013. Survivin - biology and potential as a therapeutic target in oncology. Onco Targets Ther 6:1453-1462.

    Chia S, et al. 2008. Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26:1664-1670.

    Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. 2011. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 125:13-22.

    Circu ML, Aw TY. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749-762.

    Croci DO, Cogno IS, Vittar NB, Salvatierra E, Trajtenberg F, Podhajcer OL, Osinaga E, Rabinovich GA, Rivarola VA. 2008. Silencing survivin gene expression promotes apoptosis of human breast cancer cells through a caspase-independent pathway. J Cell Biochem 105:381-390.

    Dando I, Fiorini C, Pozza ED, Padroni C, Costanzo C, Palmieri M, Donadelli M. 2013. UCP2 inhibition triggers ROS-dependent nuclear translocation of GAPDH and autophagic cell death in pancreatic adenocarcinoma cells. Biochim Biophys Acta 1833:672-679.

    Danial NN, Korsmeyer SJ. 2004. Cell death: critical control points. Cell 116:205-219.

    Davis AJ, Chen BP, Chen DJ. 2014. DNA-PK: a dynamic enzyme in a versatile DSB repair pathway. DNA Repair (Amst) 17:21-29.

    Dohi T, et al. 2004. An IAP-IAP complex inhibits apoptosis. J Biol Chem 279:34087-34090.

    Dong H, Liu G, Jiang B, Guo J, Tao G, Yiu W, Zhou J, Li G. 2014. Overexpression of the Survivin gene in SGC7901 cell resistance to cisplatin. Oncol Lett 8:1953-1956.

    Ellis MJ, Llombart-Cussac A, Feltl D, Dewar JA, Jasiowka M, Hewson N, Rukazenkov Y, Robertson JF. 2015. Fulvestrant 500 mg Versus Anastrozole 1 mg for the First-Line Treatment of Advanced Breast Cancer: Overall Survival Analysis From the Phase II FIRST Study. J Clin Oncol 33:3781-3787.

    Fernandez JG, et al. 2014. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced beta-catenin/Tcf-Lef dependent transcription. Mol Cancer 13:209.

    Fisher AB. 2009. Redox signaling across cell membranes. Antioxid Redox Signal 11:1349-1356.

    Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M. 2002. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. The New England Journal of Medicine 347:1233-1241.

    Fortugno P, Beltrami E, Plescia J, Fontana J, Pradhan D, Marchisio PC, Sessa WC, Altieri DC. 2003. Regulation of survivin function by Hsp90. Proc Natl Acad Sci U S A 100:13791-13796.

    Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092-2100.

    Furuya N, Yu J, Byfield M, Pattingre S, Levine B. 2005. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1:46-52.

    Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. 2009. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297-12305.

    Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, Turchi JJ. 2016. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol Ther 160:65-83.

    Gewinner C, et al. 2009. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115-125.

    Ghobrial IM, Witzig TE, Adjei AA. 2005. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178-194.

    Ghoncheh M, Mahdavifar N, Darvishi E, Salehiniya H. 2016. Epidemiology, Incidence and Mortality of Breast Cancer in Asia. Asian Pacific Journal of Cancer Prevention 17:47-52.

    Glaros TG, Stockwin LH, Mullendore ME, Smith B, Morrison BL, Newton DL. 2012. The "survivin suppressants" NSC 80467 and YM155 induce a DNA damage response. Cancer Chemother Pharmacol 70:207-212.

    Glick D, Barth S, Macleod KF. 2010. Autophagy: cellular and molecular mechanisms. J Pathol 221:3-12.

    Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD. 2015. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 290:209-227.

    Gritsko T, et al. 2006. Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12:11-19.

    Gu L, Chiang KY, Zhu N, Findley HW, Zhou M. 2007. Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines. Exp Hematol 35:957-966.

    Gyrd-Hansen M, et al. 2008. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 10:1309-1317.

    Han D, Antunes F, Canali R, Rettori D, Cadenas E. 2003. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557-5563.

    Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298-37302.

    Hengartner MO. 2001. Apoptosis: corralling the corpses. Cell 104:325-328.

    Higgins GC, Devenish RJ, Beart PM, Nagley P. 2012. Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radic Biol Med 53:1960-1967.

    Hongmei Z. 2012. Extrinsic and Intrinsic Apoptosis Signal Pathway Review.

    Hosokawa N, et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981-1991.

    Huang CC, Chen KL, Cheung CHA, Chang JY. 2013a. Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. Free Radic Biol Med 65:1473-1486.

    Huang X, Wu Z, Mei Y, Wu M. 2013b. XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J 32:2204-2216.

    Idenoue S, et al. 2005. A potent immunogenic general cancer vaccine that targets survivin, an inhibitor of apoptosis proteins. Clin Cancer Res 11:1474-1482.

    Iqbal N, Iqbal N. 2014. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol Biol Int 2014:852748.

    Itakura E, Kishi C, Inoue K, Mizushima N. 2008. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360-5372.

    Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. 2010. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576-22591.

    Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E. 2007. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131:271-285.

    Jiang G, Ren B, Xu L, Song S, Zhu C, Ye F. 2009. Survivin may enhance DNA double-strand break repair capability by up-regulating Ku70 in human KB cells. Anticancer Res 29:223-228.

    Jiang L, Luo RY, Yang J, Cheng YX. 2013. Knockdown of survivin contributes to antitumor activity in cisplatin-resistant ovarian cancer cells. Mol Med Rep 7:425-430.

    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720-5728.

    Khan Z, Khan N, Varma AK, Tiwari RP, Mouhamad S, Prasad GB, Bisen P. 2010. Oxaliplatin-mediated inhibition of survivin increases sensitivity of head and neck squamous cell carcinoma cell lines to paclitaxel. Curr Cancer Drug Targets 10:660-669.

    Klionsky DJ, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222.

    Komatsu M, et al. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149-1163.

    Kroemer G, Galluzzi L, Brenner C. 2007. Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99-163.

    Kuma A, Mizushima N, Ishihara N, Ohsumi Y. 2002. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 277:18619-18625.

    Kunchithapautham K, Rohrer B. 2007. Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3:433-441.

    LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. 2008. IAP-targeted therapies for cancer. Oncogene 27:6252-6275.

    Lee J, Giordano S, Zhang J. 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441:523-540.

    Lee JG, Shin JH, Shim HS, Lee CY, Kim DJ, Kim YS, Chung KY. 2015. Autophagy contributes to the chemo-resistance of non-small cell lung cancer in hypoxic conditions. Respir Res 16:138.

    Levy JMM, Towers CG, Thorburn A. 2017. Targeting autophagy in cancer. Nat Rev Cancer 17:528-542.

    Li F, Altieri DC. 1999. Transcriptional analysis of human survivin gene expression. Biochem J 344 Pt 2:305-311.

    Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU. 2006. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688-699.

    Liou GY, Storz P. 2010. Reactive oxygen species in cancer. Free Radic Res 44:479-496.

    Maximiano S, Magalhaes P, Guerreiro MP, Morgado M. 2016. Trastuzumab in the Treatment of Breast Cancer. BioDrugs 30:75-86.

    Miller TW, Rexer BN, Garrett JT, Arteaga CL. 2011. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 13:224.

    Mirza A, et al. 2002. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21:2613-2622.

    Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. 2003. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679-1688.

    Muller FL, Liu Y, Van Remmen H. 2004. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279:49064-49073.

    Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J 417:1-13.

    Nakahara T, et al. 2007. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res 67:8014-8021.

    Nakamura N, Matsuura A, Wada Y, Ohsumi Y. 1997. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem 121:338-344.

    Nakamura N, et al. 2012. Interleukin enhancer-binding factor 3/NF110 is a target of YM155, a suppressant of survivin. Mol Cell Proteomics 11:M111 013243.

    Nilsson S, Koehler KF. 2005. Oestrogen receptors and selective oestrogen receptor modulators: molecular and cellular pharmacology. Basic Clin Pharmacol Toxicol 96:15-25.

    O'Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A, Tognin S, Marchisio PC, Altieri DC. 2000a. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A 97:13103-13107.

    O'Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F, Nath AK, Pober JS, Altieri DC. 2000b. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156:393-398.

    Obexer P, Ausserlechner MJ. 2014. X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Front Oncol 4:197.

    Osborne CK. 1998. Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609-1618.

    Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131-24145.

    Peery RC, Liu JY, Zhang JT. 2017. Targeting survivin for therapeutic discovery: past, present, and future promises. Drug Discov Today 22:1466-1477.

    Plescia J, et al. 2005. Rational design of shepherdin, a novel anticancer agent. Cancer Cell 7:457-468.

    Prasad S, Gupta SC, Tyagi AK. 2017. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett 387:95-105.

    Puissant A, Fenouille N, Auberger P. 2012. When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2:397-413.

    Qi J, Dong Z, Liu J, Peery RC, Zhang S, Liu JY, Zhang JT. 2016. Effective Targeting of the Survivin Dimerization Interface with Small-Molecule Inhibitors. Cancer Res 76:453-462.

    Raetz EA, et al. 2014. A phase I study of EZN-3042, a novel survivin messenger ribonucleic acid (mRNA) antagonist, administered in combination with chemotherapy in children with relapsed acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia and lymphoma (TACL) consortium. J Pediatr Hematol Oncol 36:458-463.

    Raghavan S, Pandey M. 2017. DNA double-strand break repair in mammals. Journal of Radiation and Cancer Research 8:93.

    Reczek C, Chandel N. 2017. The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 1:79-98.

    Redza-Dutordoir M, Averill-Bates DA. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977-2992.

    Reed JC. 1997. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34:9-19.

    Ring A, Dowsett M. 2004. Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643-658.

    Rivadeneira DB, Caino MC, Seo JH, Angelin A, Wallace DC, Languino LR, Altieri DC. 2015. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. Sci Signal 8:ra80.

    Rodel F, Frey B, Leitmann W, Capalbo G, Weiss C, Rodel C. 2008. Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys 71:247-255.

    Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858-5868.

    Rossi A, Deveraux Q, Turk B, Sali A. 2004. Comprehensive search for cysteine cathepsins in the human genome. Biol Chem 385:363-372.

    Sapra P, Wang M, Bandaru R, Zhao H, Greenberger LM, Horak ID. 2010. Down-modulation of survivin expression and inhibition of tumor growth in vivo by EZN-3042, a locked nucleic acid antisense oligonucleotide. Nucleosides Nucleotides Nucleic Acids 29:97-112.

    Sarela AI, Macadam RC, Farmery SM, Markham AF, Guillou PJ. 2000. Expression of the antiapoptosis gene, survivin, predicts death from recurrent colorectal carcinoma. Gut 46:645-650.

    Satoh T, et al. 2009. Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors. Clin Cancer Res 15:3872-3880.

    Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M. 2010. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci U S A 107:18511-18516.

    Schneider P, Tschopp J. 2000. Apoptosis induced by death receptors. Pharm Acta Helv 74:281-286.

    Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH. 2001. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 40:1117-1123.

    Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y. 2003. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11:519-527.

    Siegel RL, Miller KD, Jemal A. 2017. Cancer Statistics, 2017. CA Cancer J Clin 67:7-30.

    Silke J, Meier P. 2013. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol 5.

    Song KY, Jung CK, Park WS, Park CH. 2009. Expression of the antiapoptosis gene Survivin predicts poor prognosis of stage III gastric adenocarcinoma. Jpn J Clin Oncol 39:290-296.

    Song Z, Yao X, Wu M. 2003. Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278:23130-23140.

    Su L, Wang Y, Xiao M, Lin Y, Yu L. 2010. Up-regulation of survivin in oral squamous cell carcinoma correlates with poor prognosis and chemoresistance. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110:484-491.

    Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R. 2001. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 276:27058-27063.

    Tanaka T, et al. 2013. Potential survival benefit of anti-apoptosis protein: survivin-derived peptide vaccine with and without interferon alpha therapy for patients with advanced or recurrent urothelial cancer--results from phase I clinical trials. Clin Dev Immunol 2013:262967.

    Tanida I, Tanida-Miyake E, Ueno T, Kominami E. 2001. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 276:1701-1706.
    Tolcher AW, et al. 2008. Phase I and pharmacokinetic study of YM155, a small-molecule inhibitor of survivin. J Clin Oncol 26:5198-5203.

    Tolcher AW, Quinn DI, Ferrari A, Ahmann F, Giaccone G, Drake T, Keating A, de Bono JS. 2012. A phase II study of YM155, a novel small-molecule suppressor of survivin, in castration-resistant taxane-pretreated prostate cancer. Ann Oncol 23:968-973.

    Tong CWS, Wu M, Cho WCS, To KKW. 2018. Recent Advances in the Treatment of Breast Cancer. Front Oncol 8:227.

    Tsuruma T, et al. 2004. Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J Transl Med 2:19.

    Tsuruma T, et al. 2008. Clinical and immunological evaluation of anti-apoptosis protein, survivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer. J Transl Med 6:24.

    Vaira V, Lee CW, Goel HL, Bosari S, Languino LR, Altieri DC. 2007. Regulation of survivin expression by IGF-1/mTOR signaling. Oncogene 26:2678-2684.

    Vequaud E, Desplanques G, Jezequel P, Juin P, Barille-Nion S. 2016. Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res Treat 155:53-63.

    Verdecia MA, Huang H, Dutil E, Kaiser DA, Hunter T, Noel JP. 2000. Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol 7:602-608.

    Wall NR, O'Connor DS, Plescia J, Pommier Y, Altieri DC. 2003. Suppression of survivin phosphorylation on Thr34 by flavopiridol enhances tumor cell apoptosis. Cancer Res 63:230-235.

    Wang J, Li W. 2014. Discovery of novel second mitochondria-derived activator of caspase mimetics as selective inhibitor of apoptosis protein inhibitors. J Pharmacol Exp Ther 349:319-329.

    Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH, Rojanasakul Y. 2008. The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 180:3072-3080.

    Wiechno P, et al. 2014. A randomised phase 2 study combining LY2181308 sodium (survivin antisense oligonucleotide) with first-line docetaxel/prednisone in patients with castration-resistant prostate cancer. Eur Urol 65:516-520.

    Wolanin K, Piwocka K. 2007. [Role of survivin in mitosis]. Postepy Biochem 53:10-18.

    Wong RS. 2011. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87.

    Xu R, Zhang P, Huang J, Ge S, Lu J, Qian G. 2007. Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun 356:286-292.

    Yang Q, Wu J, Luo Y, Huang N, Zhen N, Zhou Y, Sun F, Li Z, Pan Q, Li Y. 2016. (-)-Guaiol regulates RAD51 stability via autophagy to induce cell apoptosis in non-small cell lung cancer. Oncotarget 7:62585-62597.

    Yao ZQ, et al. 2018. A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis 9:767.

    Youlden DR, Cramb SM, Yip CH, Baade PD. 2014. Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer Biol Med 11:101-115.

    Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT. 2007. Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75-86.

    無法下載圖示 校內:2024-04-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE