簡易檢索 / 詳目顯示

研究生: 邱俊彥
Chin, Chun-Yen
論文名稱: α-氯醯基芳香[月井]氯化氫衍生化合物之合成及應用
Synthesis and Applications of Compounds Derived from α-Chloroformylarylhydrazine Hydrochloride
指導教授: 葉茂榮
Yeh, Mou-Yung
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 145
中文關鍵詞: α-氯醯基芳香[月井]氯化氫有機螯合試劑有機發光材料
外文關鍵詞: orga, α-chloroformylarylhydrazine hydrochloride
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • α-氯醯基芳香[月井]氯化氫1其所進行之反應為獨特的,其衍生之化合物有些是僅有的,不易由其他合成途徑得到,若能開拓這些化合物之應用,則可增加α-氯醯基芳香氯化氫1之價值並彰顯其衍生反應之重要性。因此本實驗之目的乃在開拓α-氯醯基芳香氯化氫1之相關反應之應用,其應用研究分為兩部分,一為有機螯合試劑之開發;二為有機發光材料之開發,茲分述如下:
    一、以α-氯醯基芳香氯化氫1為起始原料,可經由兩種合成反應途徑得到 Salicylaldehyde(2-aryl-4-picolylsemicarbazone) (62);其中以α-氯醯基芳香氯化氫 1與水楊醛(salicylaldehyde)進行縮合反應生成芳香(carbazone)60,再由芳香與2-picolyl- amine進行親核取代反應得到目標產物62之反應途徑獲得較高之產率;化合物62可與銅離子及鎳離子進行錯合反應分別生成錯合物63及64,此兩種錯化合物經由x-ray單晶繞射光譜分析,確認為帶電中性且結構為四配位之扭曲平面四方形之錯化合物。以化合物62作為有機相之螯合試劑,於兩相系統進行水溶液中銅離子和鎳離子之萃取試驗,發現在高濃度之銅離子溶液(1000及500 ppm)其銅離子去除率甚低,而低濃度銅離子溶液(1 ppm)其去除率可高達95.6。至於鎳離子於兩相系統之萃取試驗,其幾乎無萃取效果,此乃因為螯合試劑62對於鎳離子之錯合能力較銅離子為弱,加上兩相系統質傳之不易所造成的。
    二、Terephthaldehyde-bis(N-aryl-N-(5-phenyl-[1,3,4]oxadiazol-2-yl)hydrazone)(85) 經由對苯二甲醛(terephthaldehyde)與兩倍當量之α-氯醯基芳香氯化氫1縮合反應所生成的化合物84與5-phenyl-1,2,3,4-tetrazole之反應所合成出來。此化合物之結構導入了傳輸電子之1,3,4-oxadiazole基團及傳輸電洞之芳香三級胺基團;經由光學及電化學性質之測試,化合物85a,85b及85c其螢光放光光譜之最大放光波長分別為460,461,484 nm,皆為發藍光之性質。經由CV圖及紫外光-可見光光譜,可計算得到化合物85a,85b及85c之游離能(或HOMO能階)及電子親和力(或LUMO能階)分別為5.86,2.94;5.84,2.96;5.83;2.90 eV,此化合物之游離能介於常用之電洞傳輸材料TPD 65(IP=5.5 eV)和電子傳輸材料PBD 68(IP=6.3 eV)之間,此結果顯示將芳香三級胺與1,3,4-oxadiazole兩種不同傳輸電荷性質之基團結合導入於分子結構中,可平衡分子之電荷性質。由熱重量分析測得化合物 85a, 85b 及 85c 於重量損失 5%時之裂解溫度Td分別為 242, 249 及 245 ℃,此結果顯示化合物具有不錯之熱安定性,對於應用於元件上具有很好之熱操作條件。
    三、以α-氯醯基芳香氯化氫1與pyridines、isoquinoline及quinoline所合成之化合物24,28及30,其結構經由x-ray單晶圖所確認,分別為pyridines、isoquinoline及quinoline之駢環結構。化合物24之啶環上之取代基會影響其光電性質:推電子基使UV吸收光譜藍移,而拉電子基使光譜紅移;其大部分為發藍光,但推電子基使螢光發光光譜藍移,而拉電子基使光譜紅移;含強拉電子基(乙醯基)之化合物如24D具有較大之游離能及電子親和力,而弱推電子基(甲基)對化合物之游離能及電子親和力影響較小。
    化合物28及30之結構較化合物24多了一個苯熔合環,其UV光譜及PL光譜具有較短之吸收波長及發光波長,為發藍紫光;而其亦具有較大之游離能;化合物30經單層電激發光元件之測試,可瞬間發藍紫光,其應用於電激發光元件上具有極大之潛力。

    The derivative reactions of α-chloroformylarylhydrazine hydrochloride, compound 1, show a characteristic property of often only producing a product, which practically is hard to be synthesized from other method. It is thus interesting and worth to investigate further the their derivative reactions and the product applications both as an organic chelating materials and organic luminescence materials. Followings are results of this study.

    A. Synthesis and application of salicylaldehyde(2-aryl-4- picolylsemicarbazone) (62)

    There are two synthetic routes to synthesize compound 62. The one starting from compound 1, by reacting with salicylaldehyde forming salicylaldehyde-N-aryl-chloroformylhydrazone (60), then followed by a nucleophilic reaction with picolylamine to give compound 62 was a better synthetic way in terms of yield. Compound 62 was then chelated with Cu+2 and Ni+2 to give compound 63 and 64, respectively. X-ray crystallographic study found that both organometallic compounds show a four-coordinated and electroneutral complex with a distorted square structure. The chelating ability for compound 62 to aqueous Cu+2 and Ni+2 was found that the chelating ability is better at lower Cu+2 concentration, for example, up to 95.6% Cu+2 can be removed when being 1 ppm; however, no removal of Ni+2 was observed. These results reveals compound 62 has much better chelating ability to Cu+2 than to Ni+2.

    B. Synthesis and characterization of terephthaldehydebis(N-aryl-N-(5-phenyl-[1,3,4]oxadiazol -2-yl)hydrazone(85)

    Compound 85 was obtained by reacting two equivalent compound 1 to one equivalent terephthaldehyde forming compound 84 via a condensation reaction, followed by reaction with 5-phenyl-1,2,3,4-tetrazole. Compound 85 was designed to incorporate electron-transporting group, 1,3,4-oxadiazole, and hole-transporting group, tert-arylamine. This compound was further characterized the electroluminecent properties. PL spectroscopic study revealed that the three derivatives of compound 85 (85a, 85b, and 85c) have maximum emission wavelength of 460, 461, and 484 nm, respectively, indicating these three derivatives all show a ability to emit blue light. By employing electrochemical and UV-Visible spectroscopic studies, it was found that the ionization potential (IP) and electron affinity (EA) were 5.86 and 2.94; 5.84 and 2.96; and 5.83 and 2.90 eV , respectively, for compounds 85a, 85b, and 85c. The IP value for these three compounds are between 5.5 eV (the IP of hole-transporting material TPD) and 6.3 eV (the IP of electron-transporting material PBD) indicates that the incorporation of the two charge-transporting groups into compounds 85 results in the balance of charge-transporting property. Thermal gravity measurement of compounds 85a, 85b, and 85c showed that the thermal decomposition (Td) temperature were 242, 249, and 245 ℃, respectively, for 5% weight lost. This reveals that compounds 85 have good thermal stability, so are the suitable materials for application in thermal oriented device.

    C. Synthesis and characterization of compounds 24, 28, and 30

    Compounds 24, 28, and 30 were obtained by reacting compound 1 with pyridines, isoquinoline, and quinoline, respectively. The X-ray crystallographic studies of these three compounds showed they are fused ring compound, indicative of these compounds were formed via cyclization reaction. Further characterization of these compounds, it was found that the substituent on the pyridine ring of compound 24 shows the effectiveness on its electroluminecent property. We found that UV-Visible spectrum shows a red shift for the substituent being an electron-withdrawing group, and for PL spectrum it shows the same behavior as well for electron-withdrawing substituent. Compound 24D shows having higher IP and EA values for with a strong electron-withdrawing acetyl group; however it shows having less effect on the IP and EA values for with a weak electron-donating group, such as methyl group. Compared with compound 24, compounds 28 and 30 have one addition benzene ring fused. Therefore, the maximum UV-Visible absorption and PL emission wavelength were blue-shifted, and the IP values were higher. The test for compound 30a as a EL device of single layer showed having an instant emission, indicative of that compound 30a is a good candidate for application in EL device.

    第一章 α-氯醯基芳香[月井]氯化氫之介紹 1 一、α-氯醯基芳香[月井]氯化氫之合成 1 二、α-氯醯基芳香[月井]氯化氫之特性 3 三、α-氯醯基芳香[月井]氯化氫之衍生反應 4 第二章 Salicylaldehyde(2-aryl-4-picolylsemicarbazone) 之合成及其與銅、鎳離子螯合反應之研究 18 一、前言 18 二、結果與討論 22 三、結論 41 四、實驗部分 42 第三章 Terephthaldehydebis(N-aryl-N-(5-phenyl[1,3,4] oxadiazol-2-yl)hydrazone)之合成及其發光性質 之研究 53 一、前言 53 二、結果與討論 62 三、結論 75 四、實驗部分 77 第四章 2-aryl-2H-[1,2,4]triazolo[4,3-a]pyridin-3-ones 、2-aryl-2H-[1,2,4]triazolo[3,4-a]isoquinolin-3-one 和 2-aryl-2H-[1,2,4]triazolo[4,3-a]quinolin-3-one 之發光性質之研究 85 一、前言 85 二、結果與討論 94 三、結論 110 四、實驗部分 122 參考文獻 141

    1. Badmi, B. V. and Puranik, G. S. Indian J. Chem. 1974, 12, 176.
    2. Adams, R.; Johnson, J. R. and Wilcox, C. F. J. “ Laboratory Experimental in Organic Chemistry” 6th ed., MacMillan Inc. New York 1970, 314.
    3. Thoman, C. J. and Voaden, D. J. Org. Synth. 1965, 45, 96.
    4. Tien, H. J.; Yeh, M. Y. and Huang, C. Y. J. Chin. Chem. Soc. 1985, 32, 461.
    5. Kuo, C. N.; Wu, M. H.; Chen, S. P.; Li, T. P.; Hwang, C. Y. and Yeh, M. Y. J. Chin. Chem. Soc. 1994, 41, 849.
    6. 郭朝楠 國立成功大學化學研究所碩士論文 1992
    7. Chiu, C. Y. ;Chung, J. H.; Kuo, W. F. ; Yeh, M. Y. J. Chin. Chem. Soc. 2002, 49, 1003.
    8. Freund, M. and Kuh, F. Chem. Ber. 1890, 23, 2821.
    9. 吳明學 國立成功大學化學研究所碩士論文 1994.
    10. Kuo, W. F. ; Wu,M. H. ; Chiu ,C. Y. ; Yeh, M.Y. J. Chin. Chem. Soc. 2001, 48, 215.
    11. 陳宗權 國立成功大學化學研究所碩士論文 1993.
    12. Ogura, H.; Takahashi, H. and Sato, O. Chem. Pharm. Bull. 1981, 29, 2188.
    13. 郭朝楠 國立成功大學化學研究所博士論文 1996.
    14. Chiu, C. Y. ; Kuo, C. N.; Kuo, W. F. ; Yeh, M. Y. J. Chin. Chem. Soc. 2001, 48, 1135.
    15. Mitsuru, K. S.; Hitoshi, K. T.; Katsumasa, O. K. and Tatsul, T. H. M. German Patent 1981, 3024316; C. A. 95, 43128b.
    16. Reimlinger, H.; Vandewalle, J. J. M.; Lingier, W. R. F. Chem. Ber., 1970, 103, 1934.
    17. Chiu, C. Y. ; Kuo, C. N.; Kuo, W. F. ; Yeh, M. Y. J. Chin. Chem. Soc. 2002, 49, 239.
    18. 鍾仁華 國立成功大學化學研究所碩士論文 1996.
    19. 李進義 國立成功大學化學研究所碩士論文 1998.
    20. 謝金生 國立成功大學化學研究所碩士論文 2000.
    21. 郭文發 國立成功大學化學研究所博士論文 2001.
    22. Bjerrum, J.; Schwarzenbach, G.; Sillen, L.G. “ Stability Constants. I. Organic Ligands “ , 1957, No.6.
    23. Lacoste, R.G.; Martell, A.E. Inorganic Chemistry, 1964, 3, 881.
    24. Grinstead, R. R.; Nasutavicus, W.A. US 4031038 , 1977
    25. Sahni , S.K.; Drew, M.G.B.; Bell, T.W.; Brunschwing, B.S. J. Chem. Soc. Chem. Commun., 1993.
    26. Oshio, H. J. Chem. Soc. Dalton Trans, 1990, 2985.
    27. Zhang, W.; Loebach, J.L.; Wilson, S.R.; Jacobsen, E.N. J. Am. Chem. Soc. 1990, 112, 2801
    28. Rihter, B.; Srihari, S.; Hunter, S.; Masnovi, J. J. Am. Chem. Soc. 1993, 115, 3918.
    29. Gravert, D.J.; Griffin, J.H. J. Org. Chem. 1993, 58, 820.
    30. Curini, M.; Epifano, F.; Maltese, F.; Marcotullio, M.C. Tetrahedron Letters 2002, 43, 3821.
    31. Lopez, J.; Mintz, E.A.; Hsu, F.L.; Bu, X.R. Tetrahedron 1998, Asymmetry 9, 3741.
    32. Goldberg, D.E.; Fernelius, W.C. J. Phys. Chem. 1959, 63, 1246.
    33. Dresner, J. RCA Review 1969, 30, 332.
    34. Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. 1988, 27, L269.
    35. Ohta, M.; Sakon, Y.; Takahash, T.; Adachi, C.; Nagai, K. US 5420288, 1995.
    36. Saito, S.; Tsutsui, T.; Adachi, C.; Hamada, Y. US 5382477, 1995.
    37. Hironaka, Y.; Tokailia, H.; Hosokawa, C.; Kusumoto, T. US 5336546, 1994.
    38. Meier, M.; Buchwald, E.; Karg, S.; Posch, P.; Greczmiel, M.; Strohriegl, P.; Rieb, W. Synthetic Metals 1996, 76, 95.
    39. Yin, S.; Peng, J.; Li, C.; Huang, W.; Liu, X.; Li, W.; He, B. Synthetic Metals 1998, 93, 193.
    40. Hosakawa, C.; Sakamoto, S.; Kusumoto, T. US 5389444, 1995.
    41. Kang, I.N.; Shim, H.K.; Zyung, T. Chem. Mater. 1997, 9, 746.
    42. Milcent, R.; Barbier, G. J. Heterocyclic Chem. 1987, 24, 1233.
    43. Tao, Y.T.; Balasubramaniam, E.; Danel, A.; Tarosz, B.; Tomasik, P. Chem. Mater. 2001, 13, 1207.
    44. Thelakkat, M.; Schmidt, H.W. Adv. Mater. 1998, 10, 219.
    45. Finnegan, W. G.; Henry, R.A.; Lofquist, R. J. Org. Chem. 1958, 80, 3908.
    46.Nguyen, T. H.; Milcent, R.; Barbier, G. J. Heterocyclic Chem., 1985, 22, 1383.
    47.Rae, A. D.; Ramsay, C. G.; Steel, P. J. Aust. J. Chem., 1988, 41, 419.
    48.Carruba, M. O.; Parenti, M.; Ricciardi, S.; Picotti, G. B.; Mantegazza, P. Pharmacol. Res. Commun., 1979, 11, 169.
    49. Klinowski, J. Material Science 1981, 7, 43.
    50. Klupfel, K.W.; Sus, O.; Behmenburg, H.; Neugebauer, W. US 3180730, 1965.
    51. Chen, C.H.; Hung, Y. US 4992349, 1991.
    52. Shibata, T. JP 6122874, 1994.
    53. Murayama, R. US 5227252, 1993.
    54. Utsugi, K.; Takano, S. J. Electrochem. Soc. 1992, 139, 3610.
    55. Saito, S.; Tsutsui, T.; Era, M.; Takada, N.; Adachi, C.; Hamada, Y.; Wakimoto, T. Proc. SPIE 1993, 1910, 212.
    56. Hamada, Y.; Sano, T.; Shibata, K.; Kuroki, K. Japan J. Appl. Phys. Part 2. 1995, 34(7A), L824.
    57. Kido, J.; Kohda, M.; Okuyama, K.; Nagan, K. Appl. Phys. Lett. 1992, 61, 761.
    58. 黃芳銘 國立成功大學化學研究所碩士論文 1997.

    下載圖示 校內:2004-07-16公開
    校外:2004-07-16公開
    QR CODE