| 研究生: |
邱立洋 Chiu, Lih-Yang |
|---|---|
| 論文名稱: |
應用於高溫下之多層W-HfO2-x太陽能吸收膜 High Temperature Multilayered W-HfO2-x Solar Absorber Coatings |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 太陽能吸收膜 、共濺鍍 、瓷金材料 、W-HfO2-x |
| 外文關鍵詞: | W-HfO2-x, reactive magnetron sputter, solar selective coatings |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為使用反應式磁控共濺鍍法,製備尚未被利用於太陽能選擇性吸收塗層之瓷金材料W-HfO2-x,為了使實驗更接近於應用,將W-HfO2-x鍍製於不鏽鋼基板上,透過各種不同實驗參數的分析,得到吸收率良好之單層膜,再藉由單層膜紅外光反射層與抗反射層的研究,將各層最佳的實驗參數進行多層堆疊,創造出高達92%太陽能吸收率之多層膜,並且進行600°C下的高溫測試,證明其為應用於高溫下之多層W-HfO2-x太陽能吸收膜。
本論文之結果與討論主要分為四大部分,第一部分至第三部分主要探討單層膜紅外光反射層(W)、瓷金吸收層(W-HfO2-x)、抗反射層(HfO2-x)之單層膜研究。我們首先利用場發射掃描式顯微鏡(FE-SEM)的側面分析,得到各膜層之厚度與薄膜側邊形貌,發現當共濺鍍時,在濺鍍中無通氧氣的環境下,會有較高的薄膜沉積速率與明顯之柱狀結構。在低略角X光繞射儀(GI-XRD)的量測下,進行薄膜結晶結構的分析,發現鎢的摻雜會限制氧化鉿形成結晶而呈現非晶態,而造成吸收峰之吸收率下降,另外也發現氧化鉿在較高之功率下能形成晶粒較大的緻密結構,進而影響折射率。我們也利用橢圓偏光儀(Ellipsometer)來分析不同功率下之折射率,當功率提高時,由於其較為緻密且結晶性質較佳之結構,折射率也相對提高。並藉由紫外光/可見光/近紅外光分光光譜儀(UV/vis/NIR Spectrometer)量測瓷金吸收層之反射率,再經公式的計算得出太陽能吸收率,發現在無通氧之情況,其吸收率與鎢靶功率呈正相關,因為厚度造成吸收的增加,由此結果選擇此情況當作高金屬含量瓷金吸收層,而在有通氧當反應氣體的情況時,發現其吸收率與鎢靶功率呈負相關,因為吸收峰波谷位置與鎢奈米晶粒大小隨著鎢靶功率的提升有紅移的現象,由此結果選擇此情況當作低金屬含量瓷金吸收層。我們也利用場發射掃描式顯微鏡附設之能量散佈光譜儀(EDS)來量測表面之組成元素,證明低金屬含量與高金屬含量瓷金吸收層之區別。另外使用高解析場發穿透式電子顯微鏡(HR-TEM)來觀察鎢奈米晶粒的尺寸大小,發現鎢靶功率的提高會造成晶粒變大,進而影響吸收峰位置的偏移。最後使用放射率計(Emissionmeter)量測出不同實驗參數下之放射率,進而選擇較佳之單層膜。
第四部分則將各個最佳之單層膜進行多層堆疊,形成SS substrate / W / W-HfO2-x(H) / W-HfO2-x(L) / HfO2-x的結構,經由改變各層的厚度,以及使用超高金屬含量瓷金吸收層來取代鎢層,並藉由分光光譜儀與放射率計的吸收率和放射率量測,以及使用色度計(Colorimeter)對色彩之分析,創造出高吸收率與低放射率之彩色多層選擇性吸收膜,最後做600°C的高溫測試,發現其光學性質幾乎沒有改變,驗證其為可以應用於高溫下之太陽能吸收膜。
Tungsten-doped Hafnium oxide (W-HfO2-x) coatings were deposited using RF and DC reactive magnetron co-sputtering techniques. Stainless steel (5 x 5 cm) was used as substrates for solar absorber W-HfO2-x coatings. In this works, various deposition parameters including sputtering power, O2 flow rate, and deposited time were investigated. The resulting coatings therefore exhibit various compositions, crystal structures, grain sizes, and thicknesses. The obtained coatings were examined using, field emission scanning electron microscopes (FE-SEM), transmission electron microscopes (TEM), glazing angle X-Ray diffraction (GIXRD), UV/vis/NIR spectrometer, and emissionmeter. Effects of the material characteristics on the coating performance are discussed.
[1] 薛春木, "HfO2-x 薄膜之結構與光學性質暨其應用於高溫 HfO2-x/W/HfO2-x/W 多層太陽能選擇性吸收膜之研究," 成功大學材料科學及工程學系學位論文, pp. 1-131, 2017.
[2] M. S. Răboacă et al., "Concentrating Solar Power Technologies," Energies, vol. 12, no. 6, p. 1048, 2019.
[3] 藍詠翔, "瓷金結構 aC: H/Pt 用於選擇性太陽吸收膜之研究," 成功大學材料科學及工程學系學位論文, pp. 1-104, 2009.
[4] F. Cao, K. McEnaney, G. Chen, and Z. Ren, "A review of cermet-based spectrally selective solar absorbers," Energy & Environmental Science, vol. 7, no. 5, pp. 1615-1627, 2014.
[5] A. Antonaia, A. Castaldo, M. Addonizio, and S. Esposito, "Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature," Solar Energy Materials and Solar Cells, vol. 94, no. 10, pp. 1604-1611, 2010.
[6] F. Cao, D. Kraemer, T. Sun, Y. Lan, G. Chen, and Z. Ren, "Enhanced Thermal Stability of W‐Ni‐Al2O3 Cermet‐Based Spectrally Selective Solar Absorbers with Tungsten Infrared Reflectors," Advanced Energy Materials, vol. 5, no. 2, p. 1401042, 2015.
[7] X. Wang et al., "High-temperature tolerance in WTi-Al2O3 cermet-based solar selective absorbing coatings with low thermal emissivity," Nano energy, vol. 37, pp. 232-241, 2017.
[8] A. Al-Rjoub, L. Rebouta, P. Costa, and L. Vieira, "Multi-layer solar selective absorber coatings based on W/WSiAlNx/WSiAlOyNx/SiAlOx for high temperature applications," Solar Energy Materials and Solar Cells, vol. 186, pp. 300-308, 2018.
[9] S. Vepřek and S. Reiprich, "A concept for the design of novel superhard coatings," Thin solid films, vol. 268, no. 1-2, pp. 64-71, 1995.
[10] K. Shih and D. Dove, "Ti/Ti‐N Hf/Hf‐N and W/W‐N multilayer films with high mechanical hardness," Applied physics letters, vol. 61, no. 6, pp. 654-656, 1992.
[11] J. Khoshman, A. Khan, and M. Kordesch, "Amorphous hafnium oxide thin films for antireflection optical coatings," Surface and Coatings Technology, vol. 202, no. 11, pp. 2500-2502, 2008.
[12] F. Martínez et al., "Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering," Journal of Physics D: Applied Physics, vol. 40, no. 17, p. 5256, 2007.
[13] N. Miyata, T. Yasuda, and Y. Abe, "Structural degradation of thin HfO 2 film on Ge during the postdeposition annealing," Journal of Applied Physics, vol. 107, no. 10, p. 103536, 2010.
[14] C.-Y. Li, F. N. I. Sari, and J.-M. Ting, "Reactive magnetron sputter-deposited TiNxOy multilayered solar selective coatings," Solar Energy, vol. 181, pp. 178-186, 2019.
[15] N. Selvakumar, H. C. Barshilia, K. Rajam, and A. Biswas, "Structure, optical properties and thermal stability of pulsed sputter deposited high temperature HfOx/Mo/HfO2 solar selective absorbers," Solar Energy Materials and Solar Cells, vol. 94, no. 8, pp. 1412-1420, 2010.
[16] S.-S. Lin and C.-S. Liao, "Structure and physical properties of W-doped HfO2 thin films deposited by simultaneous RF and DC magnetron sputtering," Surface and Coatings Technology, vol. 232, pp. 46-52, 2013.
[17] S.-S. Lin, C.-S. Liao, and S.-Y. Fan, "Effects of substrate temperature on properties of HfO2, HfO2: Al and HfO2: W films," Surface and Coatings Technology, vol. 271, pp. 269-275, 2015.
[18] 張志純, "太陽能之理論及應用, 徐氏基金會, 台北市," 1982.
[19] "http://performativedesign.com/guides/solar-design/the-sun/."
[20] K. Zhang, L. Hao, M. Du, J. Mi, J.-N. Wang, and J.-p. Meng, "A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings," Renewable and Sustainable Energy Reviews, vol. 67, pp. 1282-1299, 2017.
[21] J. Moon et al., "High performance multi-scaled nanostructured spectrally selective coating for concentrating solar power," Nano Energy, vol. 8, pp. 238-246, 2014.
[22] C. E. Kennedy, "Review of mid-to high-temperature solar selective absorber materials," National Renewable Energy Lab., Golden, CO.(US), 2002.
[23] K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007.
[24] Q. C. Zhang and D. R. Mills, "Very low‐emittance solar selective surfaces using new film structures," Journal of applied physics, vol. 72, no. 7, pp. 3013-3021, 1992.
[25] J. C. Fan and S. A. Spura, "Selective black absorbers using rf‐sputtered Cr2O3/Cr cermet films," Applied Physics Letters, vol. 30, no. 10, pp. 511-513, 1977.
[26] T. S. Sathiaraj, R. Thangaraj, H. Al Sharbaty, M. Bhatnagar, and O. Agnihotri, "Ni-Al2O3 selective cermet coatings for photothermal conversion up to 500 C," Thin Solid Films, vol. 190, no. 2, pp. 241-254, 1990.
[27] H. C. Barshilia, P. Kumar, K. Rajam, and A. Biswas, "Structure and optical properties of Ag–Al2O3 nanocermet solar selective coatings prepared using unbalanced magnetron sputtering," Solar Energy Materials and Solar Cells, vol. 95, no. 7, pp. 1707-1715, 2011.
[28] D. Xinkang, W. Cong, W. Tianmin, Z. Long, C. Buliang, and R. Ning, "Microstructure and spectral selectivity of Mo–Al2O3 solar selective absorbing coatings after annealing," Thin Solid Films, vol. 516, no. 12, pp. 3971-3977, 2008.
[29] Q.-C. Zhang, "Direct current magnetron sputtered W–AlN cermet solar absorber films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 15, no. 6, pp. 2842-2846, 1997.
[30] Q.-C. Zhang, "Stainless-steel–AlN cermet selective surfaces deposited by direct current magnetron sputtering technology," Solar Energy Materials and Solar Cells, vol. 52, no. 1-2, pp. 95-106, 1998.
[31] J. Wang, B. Wei, Q. Wei, and D. Li, "Optical property and thermal stability of Mo/Mo–SiO2/SiO2 solar‐selective coating prepared by magnetron sputtering," physica status solidi (a), vol. 208, no. 3, pp. 664-667, 2011.
[32] 李卓諺, "以反應式磁控濺鍍法製備 TiNxOy 多層膜於太陽能選擇性吸收塗層之應用," 成功大學材料科學及工程學系學位論文, pp. 1-112, 2017.
[33] M.-H. Chan, "濺鍍法中以空氣做為反應性氣體製備氮化鈦, 氮氧化鈦與氮摻雜二氧化鈦薄膜及其特性研究," 中興大學材料科學與工程學系所學位論文, pp. 1-167, 2011.
[34] 赵嘉学 and 王军生, "等离子体发射监控系统参与的中频孪生反应磁控溅射沉积 TiO2 薄膜的实验研究," 2009.
[35] S. Zhao and E. Wackelgard, "Optimization of solar absorbing three-layer coatings," Solar Energy Materials and Solar Cells, vol. 90, no. 3, pp. 243-261, 2006.
[36] "楊慧德, 物理冶金學(含材料科學)-八版-. 鼎茂圖書出版股份有限公司, 2012.."
[37] 林麗娟, "X 光繞射原理及其應用," X 光材料分析技術與應用專題, 1994.
[38] 羅聖全, "科學基礎研究之重要利器—掃描式電子顯微鏡(SEM)," 科學研習, 2013.
[39] "http://www.tohokaken-cat.jp/analysis.html."
[40] "http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/1759/tem2100.htm."
[41] 張惇易, "可控制色彩之氮氧化鈦塗層," 成功大學材料科學及工程學系學位論文, pp. 1-68, 2018.
[42] 鄭景翔, "GZO/Pt/GZO 透明導電多層膜之性質研究及光學模擬," 成功大學材料科學及工程學系學位論文, pp. 1-96, 2006.
[43] J. Agudo, P. Pardo, H. Sánchez, Á. Pérez, and M. Suero, "A low-cost real color picker based on arduino," Sensors, vol. 14, no. 7, pp. 11943-11956, 2014.
[44] "http://optosol.com/emissiometer-k3/."
[45] "https://www.webelements.com/."
[46] M. Waite and S. I. Shah, "Target poisoning during reactive sputtering of silicon with oxygen and nitrogen," Materials Science and Engineering: B, vol. 140, no. 1-2, pp. 64-68, 2007.
[47] 陈建林, 陈荐, 何建军, 任延杰, 邱玮, and 陈振华, "Al–Sc 共掺杂 ZnO 透明导电薄膜的掺杂机制," 硅酸盐学报, vol. 39, no. 7, pp. 1112-1117, 2011.
[48] C. Wang, J. Shi, Z. Geng, and X. Ling, "Polychromic Al–AlN cermet solar absorber coating with high absorption efficiency and excellent durability," Solar Energy Materials and Solar Cells, vol. 144, pp. 14-22, 2016.
[49] G. L. Hornyak, C. J. Patrissi, and C. R. Martin, "Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: The nonscattering maxwell− garnett limit," The Journal of Physical Chemistry B, vol. 101, no. 9, pp. 1548-1555, 1997.
[50] C. Arancibia-Bulnes, C. Estrada, and J. Ruiz-Suárez, "Solar absorptance and thermal emittance of cermets with large particles," Journal of Physics D: Applied Physics, vol. 33, no. 19, p. 2489, 2000.
[51] D. Trotter and A. Sievers, "Spectral selectivity of high-temperature solar absorbers," Applied optics, vol. 19, no. 5, pp. 711-728, 1980.
[52] L. Y. Tyng, M. R. Ramli, M. B. H. Othman, R. Ramli, Z. A. M. Ishak, and Z. Ahmad, "Effect of crosslink density on the refractive index of a polysiloxane network based on 2, 4, 6, 8‐tetramethyl‐2, 4, 6, 8‐tetravinylcyclotetrasiloxane," Polymer International, vol. 62, no. 3, pp. 382-389, 2013.
[53] 蕭為元, "抗反射膜在顯示技術與太陽能吸收之研究," 國立中央大學, 2010.