簡易檢索 / 詳目顯示

研究生: 彭鈺博
Peng, Yu-Po
論文名稱: Ti-7.5Mo合金的熱處理效應及於牙科鑄造的應用
Heat treatment effect and dental casting application of Ti-7.5Mo alloy
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 126
中文關鍵詞: Ti-Mo合金牙科鑄造雙相區內固溶處理機械性質
外文關鍵詞: Ti-Mo alloy, α/β dual-phase, dental casting, mechanical properties
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩個部分,第一部分為探討Ti-7.5Mo合金與純鈦(Grade 2)運用於牙科中的活動式假牙鑄造的差異性,以釐清Ti-7.5Mo合金作為牙科鑄造合金之潛力。第二部分,則研究不同固溶處理溫度以及不同含量的Ti-Mo二元合金,經熱處理後的機械性質與微結構探討。
    首先,Ti-7.5Mo合金與純鈦進行所有包含在牙科鑄造合金規範的測試並探討Ti-7.5Mo合金與純鈦在實際應用上的差距。可發現到Ti-7.5Mo合金除了在雜質元素、密度、熱膨脹率以及固態液態轉換溫度皆無太大的差別。經X光相鑑定結果顯示,Ti-7.5Mo合金多由α”相所組成以極少量的β相,而純鈦則由α/α’相所組成。而金相結果顯示純鈦多為板狀結構,Ti-7.5Mo合金則為針狀α”相以及等軸β相所組成。在實際應用的方面,Ti-7.5Mo合金在網狀鑄造試驗較純鈦高出許多,且由穿透式X光可發現純鈦所製成的活動式假牙有缺陷以及空孔的存在。拉伸測試顯示Ti-7.5Mo合金相較於純鈦更佳的機械性質(Ti-7.5Mo合金:拉伸強度806MPa、拉伸率42%以及70GPa的彈性模數;純鈦:拉伸強度571MPa、拉伸率22%以及113GPa的彈性模數),而且彎曲測試也顯示Ti-7.5Mo合金由於較純鈦來比有更高的彎曲強度以及更低的彈性模數,使得Ti-7.5Mo合金有更好的彈性回復角(31.5°比上2.8°),因此可判定Ti-7.5Mo合金較純鈦相比具有更佳的性質,更適合應用於活動式假牙。
    第二部分,則探討不同比例的Ti-xMo合金於雙相區內固溶處理後的微結構以及機械性質表現。X光繞射結果顯示,隨著固溶溫度以及Mo含量的上升,β相的峰值也隨之上升,而α/α’相的峰值則隨之下降。Ti-9.5Mo於800℃進行固溶處理後,主要皆由β相所組成,而α”相則於Ti-7.5Mo進行800℃固溶處理後可被觀察到。而Ti-1.5Mo不論在何種溫度之下,大部分板狀的α相結構組成。而機械性質的方面,當固溶溫度為700℃時,降伏強度及最大拉伸強度皆隨Mo含量的上升而上升,最高的拉伸強度則發生於Ti-7.5以及9.5Mo。當固溶溫度達到750℃時,Ti-5.5Mo合金的機械強度有明顯的提升,且其伸長率並未下降,而Mo含量持續上升會導致伸長率隨之增加,但機械強度並無明顯改變。最後,當固溶溫度達到800℃時Ti-3.5、5.5以及7.5Mo合金具有與Ti-1.5以及9.5Mo相對低的機械強度。然而,機械性質的變化由於影響因素眾多,還未有一完善的解釋,但,經由於雙相區內固溶處理後的Ti-Mo合金仍表現出不錯的機械性質。

    In this study, first of all a head-to-head comparison was made between an in-house-developed Ti-7.5Mo alloy and commonly-used grade-2 commercially pure titanium (CP-Ti) for dental casting applications. Both metals had undergone a series of tests, and Ti-7.5Mo alloy shows better castability and mechanical properties. Second, investigation of the effect of heat treatment within the alpha (α)/beta (β) dual-phase field on the structure and tensile properties of Ti-(1.5-9.5) mass% Mo alloys. When heat-treated at 700℃, the yield strength (YS) and ultimate tensile strength (UTS) increased while the elongation generally decreased with Mo content. The highest YS and UTS were found in Ti-7.5Mo and Ti-9.5Mo. When heat-treated at 750℃, the strength of Ti-5.5Mo was improved without reducing elongation. With Mo concentration increased to 7.5% or higher, the elongation further increased while the strength maintained a similar level. When treated at 800℃, the YS of Ti-3.5Mo, Ti-5.5Mo and Ti-7.5Mo maintained a lower level than Ti-1.5Mo and Ti-9.5Mo.

    總目錄 中文摘要 I 英文延伸摘要 III 致謝 IX 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 5 第二章 簡介及文獻回顧 7 2-1 生醫材料簡介 7 2-2 生醫金屬材料的市場 10 2-3 骨科金屬生醫材料的發展 13 2-4 牙科金屬材料的發展 14 2-5 活動式假牙介紹 16 2-6 鈦及鈦合金的基礎 20 2-7 純鈦金屬鑄造 25 2-8 各類型鈦合金概述 27 2-8-1 α或near α型鈦合金 28 2-8-2 β型鈦合金 30 2-8-3 α+β型鈦合金 33 2-9 鈦合金的非平衡相 34 第三章 理論基礎與文獻回顧 37 3-1 鈦合金之設計理論 37 3-1-1 分離式多樣化叢集方式 37 3-1-2 電子結構的分子軌域計算 38 3-2 金屬的強化機制 40 3-2-1 細晶粒強化 40 3-2-2 加工硬化 41 3-2-3 固溶強化 42 3-2-4 析出強化 42 3-3 拉伸破斷機制 47 3-3-1 脆性破斷(brittle fracture) 48 3-3-2 延性破斷(ductile fracture) 48 3-4 精密鑄造法 50 3-4-1 包埋鑄造法 50 3-4-2 製程步驟 55 3-5 鑄造性 (castability) 55 3-5-1 金屬流動性 (fluidity) 56 3-5-2 金屬流動性試驗法 56 3-5-3 影響金屬流動性的因素 60 第四章 實驗步驟及方法(I) 68 4-1 實驗流程圖 68 4-2 Ti-7.5Mo合金元素含量測定 69 4-3 Ti-7.5Mo合金密度測定 69 4-4 脫蠟鑄造 69 4-5 耐蝕性測試 70 4-6 細胞毒性 71 4-7 熱膨脹係數測定 72 4-8 固態液態轉換溫度測定 72 4-9 維氏硬度試驗 73 4-10 拉伸測試 73 4-11 彎曲測試 74 4-12 X光相分析 75 4-13 金相組織觀察 76 4-14 加工性與拋光性測試 77 4-15 鑄造性測試 78 第五章 結果與討論(I) 79 5-1 化學成分組成 79 5-2 密度、熱膨脹係數以及固態液態轉換溫度 80 5-3 耐蝕性 84 5-4 細胞毒性測試 85 5-5 晶體結構與微結構 86 5-6 鑄造性測試 89 5-7 加工性 92 5-8 機械性質 92 5-9 結論 94 第六章 實驗步驟(II) 96 6-1 實驗流程圖(II) 96 6-2 合金配置 97 6-3 合金的熔煉與鑄造 97 6-4 固溶熱處理 100 6-5 試片切割 100 6-6 拉伸測試 101 6-7 X光繞射分析 102 6-8 金相組織觀察 103 第七章 結果與討論(II) 104 7-1 X光相鑑定 104 7-2 金相組織觀察 110 7-3 拉伸測試 118 7-4 結論(II) 120 第八章 參考文獻 122

    Abdel-Hady, Mohamed, Keita Hinoshita, and Masahiko Morinaga. 2006. 'General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters', Scripta Materialia, 55: 477-80.
    Akahori, Toshikazu, Mitsuo Niinomi, Hisao Fukui, and Akihiro Suzuki. 2004. 'Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thermo-mechanical treatments', Materials Transactions, 45: 1540-48.
    Bagariatskii, Iu A, GI Nosova, and TV Tagunova. 1958. "Factors in the formation of metastable phases in titanium-base alloys." In Soviet Physics Doklady, 1014.
    Baker, C. 1971. 'The Shape-Memory Effect in a Titanium-35 wt.-% Niobium Alloy', Metal Science Journal, 5: 92-100.
    Banerjee, Dipankar, and J. C. Williams. 2013. 'Perspectives on Titanium Science and Technology', Acta Materialia, 61: 844-79.
    Becker, Curtis M, David A Kaiser, and Marvin H Goldfogel. 1994. 'Evolution of removable partial denture design', Journal of Prosthodontics, 3: 158-66.
    Bohnenkamp, David M. 2014. 'Removable partial dentures: clinical concepts', Dental Clinics, 58: 69-89.
    Brown, A. R. G., D. Clark, J. Eastabrook, and K. S. Jepson. 1964. 'The Titanium-Niobium System', Nature, 201: 914-15.
    Campbell, Stephen D, Lyndon Cooper, Helen Craddock, T Paul Hyde, Brian Nattress, Sue H Pavitt, and David W Seymour. 2017. 'Removable partial dentures: The clinical need for innovation', The Journal of prosthetic dentistry, 118: 273-80.
    Cardoso, Flavia F., Peterson L. Ferrandini, Eder S. N. Lopes, Alessandra Cremasco, and Rubens Caram. 2014. 'Ti–Mo alloys employed as biomaterials: Effects of composition and aging heat treatment on microstructure and mechanical behavior', Journal of the Mechanical Behavior of Biomedical Materials, 32: 31-38.
    Chan, Kwai S, Marie Koike, Benjamin W Johnson, and Toru Okabe. 2008. 'Modeling of alpha-case formation and its effects on the mechanical properties of titanium alloy castings', Metallurgical and Materials Transactions A, 39: 171-80.
    Chen, Yu-yong, Li-juan Xu, Zhi-guang Liu, Fan-tao Kong, and Zi-yong Chen. 2006. 'Microstructures and properties of titanium alloys Ti-Mo for dental use', Transactions of Nonferrous Metals Society of China, 16: s824-s28.
    Chung, Chin-Chin, Jing-Wei Lee, Chien-Ping Ju, and Jiin-Huey Chern Lin. 2014. 'Effect of Solution Treatment Time on Structure and Mechanical Properties of Fast-Cooled Ti–7.5Mo Alloy', Advanced Engineering Materials, 16: 376-80.
    Craig, RG, and FA Peyton. 1958. 'Elastic and mechanical properties of human dentin', Journal of dental research, 37: 710-18.
    Domingo, Jose L. 2002. 'Vanadium and tungsten derivatives as antidiabetic agents', Biol Trace Elem Res, 88: 97-112.
    Egusa, Hiroshi, Nagakazu Ko, Tsunetoshi Shimazu, and Hirofumi Yatani. 2008. 'Suspected association of an allergic reaction with titanium dental implants: a clinical report', The Journal of prosthetic dentistry, 100: 344-47.
    Farthing, T. W. 1987. 'The development of titanium and its alloys', Clinical Materials, 2: 15-32.
    Ho, W. F. 2008. Effect of omega phase on mechanical properties of Ti-Mo alloys for biomedical applications.
    Ho, W. F., C. P. Ju, and J. H. Chern Lin. 1999. 'Structure and properties of cast binary Ti–Mo alloys', Biomaterials, 20: 2115-22.
    Huckstep, R. L. 1977. 'Early Mobilization and Rehabilitation in Fractures and Orthopedic Conditions', Australian and New Zealand Journal of Surgery, 47: 344-53.
    Keltjens, HMAM, J Mulder, AF Käyser, and NHJ Creugers. 1997. 'Fit of direct retainers in removable partial dentures after 8 years of use', J Oral Rehabil, 24: 138-42.
    Kuroda, Daisuke, Mitsuo Niinomi, Masahiko Morinaga, Yosihisa Kato, and Toshiaki Yashiro. 1998. 'Design and mechanical properties of new β type titanium alloys for implant materials', Materials Science and Engineering: A, 243: 244-49.
    Kuroda, P. A. B., M. A. R. Buzalaf, and C. R. Grandini. 2016. 'Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys', Mater Sci Eng C Mater Biol Appl, 67: 511-15.
    Loney, Robert W. 2011. 'Removable partial denture manual', Dalhousie University.
    Long, Marc, and H. J. Rack. 1998. 'Titanium alloys in total joint replacement—a materials science perspective', Biomaterials, 19: 1621-39.
    Murr, LE, SA Quinones, SM Gaytan, MI Lopez, A Rodela, EY Martinez, DH Hernandez, E Martinez, F Medina, and RB Wicker. 2009. 'Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications', Journal of the Mechanical Behavior of Biomedical Materials, 2: 20-32.
    Niinomi, M. 2003. 'Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr', Biomaterials, 24: 2673-83.
    Niinomi, M. 2008. 'Mechanical biocompatibilities of titanium alloys for biomedical applications', Journal of the Mechanical Behavior of Biomedical Materials, 1: 30-42.
    Niinomi, Mitsuo. 1998. 'Mechanical properties of biomedical titanium alloys', Materials Science and Engineering: A, 243: 231-36.
    Niinomi, Mitsuo, Tomokazu Hattori, Keizo Morikawa, Toshihiro Kasuga, Akihiro Suzuki, Hisao Fukui, and Sigeo Niwa. 2002. 'Development of low rigidity β-type titanium alloy for biomedical applications', Materials Transactions, 43: 2970-77.
    O'Donnell, Lindsay E, Karen Smith, Craig Williams, Chris J Nile, David F Lappin, David Bradshaw, Margaret Lambert, Douglas P Robertson, Jeremy Bagg, and Victoria Hannah. 2016. 'Dentures are a reservoir for respiratory pathogens', Journal of Prosthodontics, 25: 99-104.
    Perl, Daniel P, and Arnold R Brody. 1980. 'Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons', Science, 208: 297-99.
    Rao, S., T. Ushida, T. Tateishi, Y. Okazaki, and S. Asao. 1996. 'Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells', Biomed Mater Eng, 6: 79-86.
    Schwitalla, Andreas, and Wolf-Dieter Müller. 2013. 'PEEK dental implants: a review of the literature', Journal of Oral Implantology, 39: 743-49.
    Steele, JG, ET Treasure, I O'sullivan, J Morris, and JJ Murray. 2012. 'Adult dental health survey 2009: transformations in British oral health 1968–2009', British dental journal, 213: 523.
    Van Noort, R. 1987. 'Titanium: The implant material of today', Journal of Materials Science, 22: 3801-11.
    Walker, P. R., J. Leblanc and M. Sikorska. 1989. 'Effects of Aluminum and Other Cations on the Structure of Brain and Liver Chromatin', Biochemistry, 28: 3911-15.
    Wang, Russell R and Aaron Fenton. 1996. 'Titanium for prosthodontic applications: a review of the literature', Quintessence international, 27.
    Watanabe, K, O Miyakawa, Y Takada, O Okuno, and T Okabe. 2003. 'Casting behavior of titanium alloys in a centrifugal casting machine', Biomaterials, 24: 1737-43.
    Zhang, Ling-bo, Wang, Ke-zheng, Xu, Li-juan, Xiao, Shu-long and Chen, Yu-yong. 2015. 'Effect of Nb addition on microstructure, mechanical properties and castability of β-type Ti–Mo alloys', Transactions of Nonferrous Metals Society of China, 25: 2214-20.
    Zhang, W. D., Liu, Y., Wu H., Song, M., Zhang, T. Y., Lan, X. D., and Yao, T. H.. 2015. 'Elastic modulus of phases in Ti-Mo alloys', Materials Characterization, 106: 302-07.
    洪純正、蔡吉政、侯桂林、王震乾、洪昭民(民91)。純鈦金屬鑄造機之設計原理及未來展望。中華牙誌,21(2),79-88。
    洪胤庭(民102)。純鈦及鈦合金特性及製程介紹。中工高雄會刊,21(1),12-22。

    無法下載圖示 校內:2025-02-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE