簡易檢索 / 詳目顯示

研究生: 陳棕焱
Chen, Tsung-Yen
論文名稱: 人臉追蹤與辨識系統之設計與實現
Design and implementation of the face tracking and recognition system
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 62
中文關鍵詞: 倒傳遞類神經網路膚色分割橢圓遮罩
外文關鍵詞: skin color segmentation, back propagation neural network, elliptic masking
相關次數: 點閱:119下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來影像技術因電腦運算速度的提昇,其運用也越來越廣泛,尤其以視訊會議系統、人臉辨識、電腦視覺等多有研究,然而以往的相關研究中多以靜止的攝影機、單純的背景來做追蹤,本論文以倒傳遞類神經網路搭配影像處理技術,以及自製動態攝影平台作臉部追蹤與辨識的研究。在人臉追蹤方面,利用倒傳遞類神經網路來將膚色分割,將膚色從複雜的背景中分離出來,再配合橢圓遮罩搜尋法,找出人臉的所在區域並加運算及追蹤。辨識方面使用主要特徵值與特徵向量為辨識的依據,將畫面中人臉取出與資料庫進行比對,利用最小平方誤差辨識出畫面最可能為何人。經實驗結果證實,本研究提出之人臉追蹤與辨識系統可以有效地尋找出畫面中的人臉區域並標定其中心位置追蹤並正確地辨識目標物。

    Face tracking and pose estimation, is getting more and more important recently because it can be applied in a variety of applications, such as the face recognition, video coding and teleconference, etc. However, over the past, the study focused on face tracking, which mostly used the fixed camera with pure background. Inspired by the lack of developments in face tracking, an efficient face tracking and recognition system based on the back propagation neural network of skin color segmentation is proposed in this study.
    In face tracking, the back propagation neural network on skin color segmentation is employed to separate the skin color area from a complicated background and the face position is located by elliptic masking. In face recognition, the main eigenvalue and eigenvector of image are initially saved in database as the recognize criterion, and then we use the mean square error to recognize who is in the image. Practically, this system can maintain the face on the center of the screen rapidly as well as provide efficiency for seeking and finding the accurate face and recognition in image.

    摘要 III Abstract IV 致謝 V 目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 基礎技術概述 5 2.1 簡介 5 2.2 顏色分割(color segmentation) 5 2.2.1 HSV色彩空間 6 2.2.2 正規化RGB色彩空間 6 2.2.3 YCbCr色彩空間 6 2.3 類神經網路簡介 7 2.3.1 類神經網路模型 9 2.4 靜態影像之人臉偵測 11 2.4.1 樣板匹配 (template-based method) 12 2.4.2. 特徵準則法(feature-based method) 12 2.5 動態偵測 13 2.5.1連續影像灰階變化 13 2.5.2 條件滿足的分割法(content-based segment) 13 2.5.3 光流(optical flow) 14 2.5.4 外形分析 14 2.6 動態影像之人臉偵測及追蹤 14 2.7 方向的判定 16 2.8 人臉辨識方法 17 2.8.1 主要成分分析法 17 2.9 藍芽傳輸簡介 18 第三章 人臉追蹤與辨識系統簡介 20 3.1 人臉追蹤與辨識系統簡介 20 3.2 影像前置處理 22 3.2.1 倒傳遞類神經網路介紹 23 3.2.2 倒傳遞網路數學推導 24 3.3 雜訊去除 30 3.3.1 低通濾波器 30 3.3.2 膨脹(dilation) 31 3.3.3 侵蝕(erosion) 32 3.4 邊緣偵測 33 3.5 橢圓遮罩搜尋法 35 3.6 Power Method辨識人臉 37 第四章 實驗分析與軟硬體實現 39 4.1 倒傳遞網路學習測試 39 4.2 人臉特徵值測試 43 4.3 追蹤與辨識視窗設計 44 4.3.1 追蹤視窗畫面 44 4.3.2 辨識視窗畫面 45 4.4 人臉追蹤 45 4.5 人臉辨識 47 4.6人臉追蹤系統硬體訊號流程 50 4.7 步進馬達 51 4.8 藍芽模組介紹 54 4.9 追蹤平台設計 55 第五章 結論與未來方向 56 5.1 結論 56 5.2 未來方向 57

    [1] A. Pentland, B. Moghaddam, and T. Starner, "View-Based and Modular Eigenspaces for Face Recognition", Technical report 245, MIT Media Lab Vismod, 1993.
    [2] C.Kervrann, F.Davoine, P.Perez, R.Forchheimer, C.Labit ,“Generalized likelihood ratio-based face detectionand extraction of mouth features”, Pattern Recognition Letters 18, 1997 , 899-912
    [3] C.H. Lin; J.L. Wu, ”Automatic facial feature extraction by genetic algorithms”, Image Processing, IEEE Transactions on Volume: 8 6 , June 1999 , Page(s): 834 —845
    [4] Gary R. Bradski, "Computer Vision Face Tracking For Use in a Perceptual User Interface", Intel Technology Journal Q2 '98
    [5] G.D. Hager, P.N. Belhumeur, "Real-time tracking of image regions with changes in geometry andillumination ", Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996IEEE Computer Society Conference on , 1996 , Page(s): 403 -410
    [6] Hideaki Ishii, Minour Fukumi, Norio Akamatsu, "Face detection based on skin color information in visual scenes by neural networks", 0-7803-5731-0, 1999 IEEE
    [7] J. Luettin, N.A. Thacker, S.W. Beet, "Locating and tracking facial speech features”,Pattern Recognition, 996., Proceedings of the 13th International Conference on Volume: 1, Page(s): 652 -656 vol.1, 1996
    [8] J. Sullivan, A. Blake, M. Isard and J. MaCormick, "Object Localization by Bayesian Correlation",Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on Volume: 2 , 1999 , Page(s): 1068 -1075 vol.2
    [9] J. Heinzmann, Zelinsky," A. 3-D Facial Pose and Gaze Point Estimation using a Robust Real-Time Tracking Paradigm ",Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on , 1998 , Page(s): 142 —147
    [10] J. Luettin, N.A. Thacker, S.W. Beet, "Locating and tracking facial speech features”,Pattern Recognition, 996., Proceedings of the 13th International Conference on Volume: 1, Page(s): 652 -656 vol.1, 1996
    [11] J. Luettin, A. Thacker, W.B. Steve, "Locating and Tracking Facial Speech Features",Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, 1996
    [12] J. Sullivan, A. Blake, M. Isard and J. MaCormick, "Object Localization by Bayesian Correlation",Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on Volume: 2 , 1999 , Page(s): 1068 -1075 vol.2
    [13] K. Choong Yow, R. Cipolla, "Feature-Based Human Face Detection", Department of Enginneering,Cambridge
    [14] K. Toyama, G.Haga. "Incremental focus of attention for robust visual tracking.", IN Computer Vision and Patt. Recog., pages 189-195,1996
    [15] L. Shihong; Y. Sumi, M. Kawade, F. Tomita, " Building 3D facial models and detecting face pose in 3D space ", 3-D Digital Imaging and Modeling, 1999. Proceedings. Second International Conference on , 1999, Page(s): 398 -404
    [16] L. Sirovich and M. Kirby, "Low-dimensional procedure for the characterization of human faces", J. Opt. Soc. Am. A / vol.4, No.3 / March 1987.
    [17] M. La Cassia, J. Isidoro, S. Sclaroff." Head tracking via robust registration in texture map images", CVPR, 1998.
    [18] M. La Cassia, S. Sclaroff. " Fast, reliable head tracking under varying illumination Computer Vision andPattern Recognition", 1999. IEEE Computer Society Conference on. Volume: 1 , 1999 , Page(s): 604 —6
    [19] M. Isard, A. Blake. "The Condensation Algorithm", http://www.robots.ox.ac.uk
    [20] M. La Cassia, J. Isidoro, S. Sclaroff." Head tracking via robust registration in texture map images", CVPR, 1998.
    [21] P.A. Beardsley, “A qualitative approach to classifying gaze direction”, Automatic Face and GestureRecognition, 1998. Proceedings. Third IEEE International Conference on , 1998 , Page(s): 160 —165
    [22] P.A. Beardsley, “A qualitative approach to classifying head and eye pose”, Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop on , 1998 , Page(s): 208 —213
    [23] P.A. Beardsley, “A qualitative approach to classifying head and eye pose”, Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop on , 1998 , Page(s): 208 —213
    [24] R. Kaucic, A. Blake, "Accurate, real-time, unadorned lip tracking", Computer Vision, 1998.Sixth International Conference on , 1998 , Page(s): 370 -375
    [25] R. Kaucic, D. Reynard, A. Blake, "Real-time lip trackers for use in audio-visual speechrecognition ", Integrated Audio-Visual Processing for Recognition, Synthesis andCommunication (Digest No: 1996/213), IEE Colloquium on , 1996 , Page(s): 3/1 -3/6
    [26] Rama Chellappa, Charles L. Wilson, and Saad Sirohey , "Human and Machine Recognition of Faces: A Survey", Proceeding of the IEEE, Vol. 83, No.5, pp. 705-740, MAY 1995.
    [27] Stephen Karungaru, Minour Fukumi and Norio akamatsu, "Detection of Human Faces in Visual Scenes", seven Australian and New Zealand Intelligent Information System Conference, 18-21 November 2001, Perth, Westem Australia
    [28] S. Clippingdale, T. Ito," A unified approach to video face detection, tracking and ecognition ", Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on Volume: 1 , 1999 , Page(s): 662 -666 vol.1
    [29] Shang-Hung Lin and S.Y. Kung, "Probabilistic DBNN via expectation maximization with multi-sensor classification applications", ICIP'95.
    [30] 王建權 "以數位影像處理搭配動態攝影機做人臉自動追蹤" 國立成功大學電機工程系碩士論文
    [31] 連國珍 "數位影像處裡" 儒林圖書 2002
    [32] 黃文吉 "C++ Builder與影像處理" 儒林圖書2005
    [33] 黃國峰,張真誠,陳同孝 "數位影像處理技術" 旗標圖書 2004
    [34] 葉怡成 "類神經網路模式應用與實作" 儒林圖書 2003
    [35] 譚永恆 "以數位影像處理技術作人臉自動追蹤" 國立成功大學電機工程系碩士論文
    [36] 繆紹剛 "數位影像處理 活用MATLAB" 全華圖書 2005
    [37] 鐘國亮 "影像處理與電腦視覺" 東華書局 2006
    [38] 數學傳播,20卷2期,85年6月

    下載圖示 校內:2010-07-11公開
    校外:2010-07-11公開
    QR CODE