簡易檢索 / 詳目顯示

研究生: 張耿賓
Chang, Keng-Pin
論文名稱: 空間RCCC機構耦桿線曲面之研究
An Investigation of the Ruled Surfaces Generated by Coupler Lines of RCCC Linkages
指導教授: 黃金沺
Huang, Chin-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 92
中文關鍵詞: 耦桿線RCCC直紋曲面耦桿
外文關鍵詞: coupler line, RCCC, ruled surfaces, coupler, coupler surfaces
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在討論機構特性時,機構耦桿軌跡為重要的研究主題之一。今將其耦桿點的概念做延伸,討論其耦桿上之一直線,在其空間機構運動時繪出之軌跡,稱為耦桿線曲面。Roth拓展Burmester問題至空間雙圓柱對的合成,提到平面的極點曲線是空間中的螺旋線性匯的退化情形,說明空間與平面機構之間存在某些特定的關聯性,因此本論文針對耦桿軌跡以空間RCCC機構為例,與平面四連桿之耦桿點曲線相互比較,欲由機構之耦桿軌跡瞭解兩者的關聯性。
    由等比例縮小扭角由Z軸方向觀察其耦桿線曲面,當桿件扭角變小時,其耦桿線軌跡會愈來愈近於平面上的曲線。因此本論文使用迴圈方程式代入其特殊機構之參數及耦桿線參數,由矩陣中的元素建立各變數與機構輸入變數之關係式,以得到RCCC機構退化之所有運動變數,並由坐標轉換得到該機構之耦桿軌跡,再與相同桿長的平面機構所得耦桿軌跡比對。此外本研究使用電腦輔助繪圖軟體Solidworks建立動畫模型驗證結果正確性。
    本論文提出在耦桿軌跡對應方面,四軸相互平行之RCCC機構退化至平面4R機構;具垂直且相交雙圓柱對之RCCC機構對應至平面曲柄滑塊機構;具垂直且相交之旋轉圓柱對及雙圓柱對之RCCC機構對應至平面雙滑塊機構。
    此論文以改變其空間RCCC機構參數,並利用垂直且相交雙圓柱對及旋轉滑動對,將其耦桿線曲面對應至平面四連桿機構之耦桿點曲線,包含平面4R、平面曲柄滑塊與平面雙滑塊機構。本論文發現耦桿點曲線乃耦桿線曲面之退化,以及說明空間RCCC機構與平面四連桿機構在耦桿軌跡上之對應關係。

    Coupler motions are of great interest when designing four-bar linkages. We are usually concerned with the locus of the whole coupler link or only a point on the coupler. When extending coupler points in planar linkages to coupler lines in spatial linkages, we refer to the locus of a coupler line as a coupler surface. This thesis investigates the coupler surfaces pertaining to spatial RCCC linkages and discusses how they degenerate into corresponding planar coupler curves.
    This thesis utilizes matrix representations to construct the loop equation of the RCCC linkage, and the coupler surfaces are generated according to the loop equation as the input angle varies. Special geometry of the RCCC linkage is obtained by perpendicularly intersecting the joints of the CC dyad. Planar degenerations of the spatial linkages are obtained by altering the joint parameters such as twist angles in such a way that their planar counterparts can be observed. Moreover, this thesis utilizes a CAD software package to conduct linkage animations to verify the results.
    This thesis presents the coupler surfaces of RCCC linkages, and it shows that the coupler surfaces degenerate into their planar counterparts in planar 4R linkages. In addition to the general RCCC linkage, special RCCC linkages are also investigated, and the coupler surfaces are successfully degenerated into corresponding planar coupler curves, as seen in planar slider crank and double-slider linkages.
    This thesis demonstrates that the coupler curves of planar four-bar linkages are degenerated from the coupler surfaces of spatial RCCC linkages. The coupler surfaces presented in this thesis may also facilitate the synthesis of spatial linkages for line guidance problems.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 本文架構 5 第二章 基本理論 6 2.1 D-H齊次轉換矩陣 6 2.2 空間中直線之蒲律克坐標表示法 8 2.3線坐標之坐標轉換 9 2.4 螺旋與互逆螺旋 11 2.4.1 螺旋 11 2.4.2互逆螺旋 12 2.5 空間4C機構之運動分析 13 第三章RCCC機構耦桿線曲面特性 19 3.1 空間機構耦桿點曲線與耦桿線曲面之關係 19 3.1.1 直紋曲面 19 3.1.2 機構耦桿線曲面之建構 20 3.2 空間機構耦桿線曲面 22 3.2.1 4C機構耦桿線曲面 22 3.2.2 RCCC機構耦桿線曲面 23 3.2.3 4C機構與RCCC機構耦桿線曲面對應關係 25 3.3 空間RCCC機構耦桿線分類及特性 27 3.3.1平面四連桿機構之分類 27 3.3.2空間RCCC機構之分類 31 3.3.3空間Rocker-Crank類型RCCC機構耦桿線曲面例 33 3.3.4空間Double-Crank類型RCCC機構耦桿線曲面例 35 3.3.5空間Crank-Rocker類型RCCC機構耦桿線曲面例 36 3.3.6空間 +Double-Rocker類型RCCC機構耦桿線曲面例 38 3.3.7結果討論 40 3.4空間RCCC與平面4R機構耦桿軌跡之關係 42 第四章 特殊RCCC 機構耦桿線曲面與平面機構耦桿點曲線對應關係 51 4.1空間RCCC退化概念介紹 51 4.2具垂直且相交雙圓柱對之RCCC機構耦桿線曲面 53 4.2.1平面曲柄滑塊機構耦桿點曲線 53 4.2.2與平面曲柄滑塊機構耦桿點曲線之對應關係 56 4.3 具垂直且相交旋轉圓柱對及雙圓柱對之RCCC機構耦桿線曲面64 4.3.1平面雙滑塊機構耦桿點曲線 64 4.3.2 與平面雙滑塊機構耦桿點曲線對應關係 66 4.4結果討論 72 4.5特殊RCCC機構之瞬心螺旋討論 73 4.5.1 RCCC機構瞬時螺旋之概念 74 4.5.2數值例 75 第五章 結論與未來展望 80 5.1結論 80 5.2未來展望 81 參考文獻 82 附錄 空間RCCC機構之運動分析 85

    1. Angeles, J., 1982, Spatial Kinematic Chains, Analysis, Synthesis and Optimization, Springer-Verlag, Berlin.
    2. Ball, R. S., 1900, “A Treatise on the Theory of Screws,” The University Press, Cambridge, England.
    3. Barker, C.R., 1985, “A Complete Classification of Planar Four-Bar Linkages,” Mechanism and Machine Theory, Vol. 20, No. 6, pp. 535-554.
    4. Beyer, R., 1953, Kinematische Getriebesynthese, Springer-Verlag, Berling.
    5. Bottema, O., Roth, B.(1979), Theoretical Kinematics, Dover Publications.
    6. Burmester, L., 1876, “Gerafuhrung durch das Kurbelgetriebe,” Civilingenieru, Vol. 22, pp.597-606.
    7. Burmester, L., 1877, “Gerafuhrung durch das Kurbelgetriebe,” Civilingenieru, Vol. 23, pp. 227-250.
    8. Burmester, L., 1888, Lehrbuch der Kinematik, Teubner, Leipzig.
    9. Chasles, M., 1831, “Note sur les propiétés generals du systéme de deux corps semblables entre eux, place d’une manière quelconque dans l’espace ; et sur le déplacement fini, ou infiniment petit d’un corps solide libre,” Bulletin des Sciences Mathématiques de Férussac, XIV, pp. 321-336.
    10. Chiang, C.H., 1988, Kinematics of Spherical Mechanisms, Cambridge University Press, New York.
    11. Duffy, J., 1980, Analysis of Mechanisms and Robot Manipulators, John Wiley and Sons, Inc., New York.
    12. Denavit, J., Hartenberg, R. S., 1955, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME J. Appl. Mech., Vol. 77, pp. 215-221.
    13. Grassmann, H., 1844, “Die Lineale Ausdehnungslehre,” ein neuer Zweig der Mathematik, Leipzig: Wiegand. English translation, 1995, by Lloyd Kannenberg, A new branch of mathematics.
    14. Jamalov, R., Litvin, F., Roth, B., 1984, “Analysis and Design of RCCC Linkages,” Mechanism and Machine Theory, Vol. 19, No. 4/5, pp. 397-407.
    15. Larochelle, P., Agius, A., 2005, “Interactive Visualization of the Coupler Surfaces of the Spatial 4C Mechanism,” ASME Journal of Mechanical Design, Vol. 127, No. 6, pp. 1122-1128.
    16. Larochelle, P., Murray, A. P., 1998, “A Classification Scheme for Planar 4R, Spherical 4R, and Spatial RCCC Linkages to Facilitate Computer Animation,” Proc. of ASME Design Engineering Technical Conference, Atlanta, ASME, Georgia, September 13-16.
    17. Marble, S. D., Pennock, G. R., 2000, “Algebraic-geometric Properties of the Coupler Curves of the RCCC Spatial Four-Bar Mechanism,” Mechanism and Machine Theory, Vol. 35, pp. 675-693.
    18. Ma, O., Angeles, J., 1988, “Performance Evaluation of Path Generating Planar Spherical and Spatial Four-Bar Linkages,” Mechanism and Machine Theory, Vol. 23, No. 4, pp. 257-268.
    19. Norton, R. L., 1992, Design of Machinery, McGraw-Hill, Inc., New York.
    20. Plücker, J., 1865, “On a New Geometry of Space,” Philosophical Transactions of the Royal Society of London, Vol. 155, pp. 725-791.
    21. Primrose, E. J. F., Freudenstein, F., 1969, “Spatial motions I: point paths of mechanisms with four or fewer links,” ASME Journal of Engineering for Industry, Series B, Vol. 91 , No.1, pp. 103-113.
    22. Rodrigues, O., “Des lois géométriques qui régissent les déplacements d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire,” Journal De Mathématiques Pures et Appliquées, 5, 1st Series, pp. 380-440, 1840.
    23. Roth, B., 1967, “On the Screw Axes and Other Special Lines Associated with Spatial Displacements of a Rigid Body,” Trans. ASME, Journal of Engineering for Industry, Vol. 89B, PP. 102-110.
    24. Tsai, L. W., 1999, Robot Analysis: the Mechanics of Serial and Parallel Manipulators, John Wiley and Sons, Inc., New York.
    25. Worle, H., 1962, “Untersuchungen uber koppelkurven viergliedriger raumlicher kurbelgetriebe. Konstruction,” Vol. 14, No. 10, pp. 390–392.

    無法下載圖示 校內:2016-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE