簡易檢索 / 詳目顯示

研究生: 葉桂寶
Ip, Gunadi
論文名稱: 使用β環檸檬醛控制並抑制微囊藻的生長
Control and Growth Inhibition of Microcystis using Beta-cyclocitral
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 94
外文關鍵詞: beta-cyclocitral, Microcystis aeruginosa, mechanical method, Cylindrospermopsis raciborskii, degradation kinetics
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Microcystis aeruginosa has been known to produce beta-cyclocitral when the cells ruptured. The chemical was known to cause rupture of cyanobacteria and algae. In this study, effect of beta-cyclocitral on the cell integrity and growth inhibition of two cyanobacteria, Microcystis aeruginosa and Cylindrospermopsis raciborskii were studied. A flowcytometer coupled with SYTOX stain was used to quantify the cell integrity of the tested cyanobacteria, while an enzyme immunosorbent assay was used to determine the cyanotoxins produced by the two cyanobacteria. Kinetic experiments show that 1 mg L-1 of beta-cyclocitral was able to cause 50% and 15% cell rupture of the tested Microcystis and Cylindrospermopsis respectively. A first-order rate model was able to describe the data of cell integrity for the first 60 minutes of rupture. Four mechanical methods, including sonication, bead mill, freeze method and sonication enhanced with bead mill were tested for the production of beta-cyclocitral from Microcystis cells. The results show that 5 freezing cycles of the freeze method is able to produce beta cyclocitral up to 15 µg L-1 with 92% efficiency and 84.3% recovery, respectively. Furthermore, beta-cyclocitral was produced from sonication of Microcystis cell and then applied for inhibition of M. aeruginosa and C. raciborskii. The experimental results may provide information of production and application of the cyanobactericide, beta-cyclocitral on the control of cyanobacteria in water bodies.

    Table of Contents ABSTRACT I ACKNOWLEDGEMENT II Table of Contents IV List of Figure IX List of Table XIII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives of study 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Freshwater Algae 4 2.2 Size and Diversity of Structure of Algae and cyanobacteria 4 2.3 Cyanotoxins 9 2.4 Gas Vacuoles 11 2.5 Microcystis aeruginosa 13 2.5.1 Beta-cyclocitral 14 2.5.2. Microcystins 15 2.6 Cylindrospermopsis raciborskii 17 2.6.1 Cylindrospermopsin 19 2.7 Cell Disruption Methodology 21 2.7.1 Mechanical strength of cell walls 22 2.7.2 Contamination of products (beta-cyclocitral) 22 2.7.3 Selection of Disruption method 23 2.8 Sonication 23 2.8.1 Horns 24 2.8.2 Baths 25 2.9 Bead Mill 26 2.10. Freeze Drying (Lyophillization) 27 CHAPTER 3 MATERIAL AND METHODS 29 3.1 The Approach of this Research 29 3.2 Materials and Methods 31 3.2.1 Cyanobacteria 31 3.2.2 Cell Enumeration 31 3.2.2.1 M. aeruginosa PCC7820 cell enumeration 31 3.2.2.2 Cylindrospermopsis cell enumeration 32 3.2.3 Preliminary Oxidation Process 33 3.2.3.1 Sample Preparation 33 3.2.3.2 Sampling 34 3.2.3.3 Inhibition Test 34 3.2.3 Mechanical Methods for Cell Disruption 35 3.2.3.1 Pretreatment of Sample 35 3.2.3.2 Sonification 35 3.2.3.3 Bead Mill Method 36 3.2.3.4 Freeze Shock Method 36 3.2.3.5 Bead Mill and Sonication Method 37 3.2.4 Cyanotoxins 37 3.2.4.1 Pretreatment of samples 37 3.2.4.2 Measurement of Cyanotoxins 38 3.2.5 Application Method 38 3.2.5.1 Beta Cyclocitral extraction (Run One) 38 3.2.5.2 Inhibition test (Run One) 39 CHAPTER 4 RESULTS AND DISCUSSION 40 4.1 Preliminary Research 40 4.1.1 Cell Lysis 40 4.1.1.1 Run One 40 4.1.1.2 Run Two 45 4.1.2 Inhibition Test 47 4.1.2.1 Run One 47 4.1.2.2 Run Two 50 4.1.3 Beta-cyclocitral concentration 53 4.1.3.1 Run One 53 4.1.3.2 Run Two 54 4.1.4 Cyanotoxins Concentration 55 4.1.4.1 Run One 55 4.1.4.2 Run Two 58 4.2 Mechanical Method for M. aeruginosa cell disruption 60 4.2.1 Sonication 60 4.2.1.1 Run One 61 4.2.1.2 Run Two 62 4.2.2 Bead Mill 65 4.2.2.1 Run One 66 4.2.2.2 Run Two 67 4.2.3 Freeze Method (Lyophylization) 69 4.2.3.1 Run One 70 4.2.3.2 Run Two 71 4.2.4 Bead Mill and Sonication 75 4.3 Applications 77 4.3.1 Selection of Mechanical method 77 4.3.2 Beta cyclocitral production 77 4.3.3 Inhibition Tests 78 4.3.3.1 Run one 78 4.3.3.2 Run Two 80 CHAPTER 5 CONCLUSIONS 82 5.1 Conclusion 82 5.2 Suggestion 84 REFERENCES 85 APPENDIX A – Microcystis aeruginosa PCC7820 media 92 APPENDIX B –Cylindrospermopsis sp. media 93

    Anderson, D. M., 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag. 52(7), page. 342 – 348.
    Antunes, J. T., Pedro N. L., and Vitor M. V., 2015. Cylindrospermopsis raciborskii : review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol 6, page. 471- 473.
    Armah, et. al. 2013. A review on cylindrospermopsin : the global occurrence, detection, toxicity, and degradation of a potent cyanotoxin. Environmental Science : Processes and Impact 15 : 1979 – 2003.
    Bellinger, E. G., and Sigee, D.C., 2010. Freshwater Algae. John Wiley & Sons, United Kingdom.
    Bhaduri, S., and Demhick, P. H., 1983. Simple and rapid method for disruption of bacteria for protein studies. Appl Environ Microbiol 46(4), page. 941 – 943.
    Bitton, G., 2005. Wastewater Microbiology. John Wiley & Sons, Canada.
    Bláha, L., Pavel, B., Blahoslav, M., 2010. Toxins Produced in cyanobacterial water blooms – toxicity and risk. Interdiscipline Toxicology 2(2), page. 36 – 41.
    Borthwick, K. A. J., Coakey, W. T., McDonnell, M. B., Noworthy, H., Benes, E., and Groschl, M., 2005. Development of novel compact sonicator for cell disruption. J. Microbiol Meth 60 (2) : 207-216.
    Brujan, E. A., Nahen, K., Schmidt, P., and Vogel, A., 2001. Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433(1), page. 251-281.
    Butler, N., James, C.C., Regina, L., Barbara, W., 2009. Microcystins : A brief overview of their toxicity effects, with special reference to fish, wildlife and livestock. Office of Environmental Health Hazard Assesment, California.
    Carr, N. G., and Whitton, B.A., 1982. The Biology of Cyanobacteria. University of California Press, Berkeley and Los Angeles.
    Chang, D. W., Hsieh, M. L., Chen, Y. M., Lin, T. F., and Chang, J. S., 2011. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia paleia the exposure to β-cyclocitral. Journal of Hazardous Material 185, page. 1214-1220.
    Codd G., 1995. Geographic, spatial and temporal occurrence of cyanobacterial toxins. Oral presentation at the 1st International Congress on Toxic Cyanobacteria, Bornholm, 20–24 August 1995.
    Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M.,and Cintas, P., 2008. Improved extraction of vegetable oils under high-density ultrasound and/or microwaves. Ultrasound Sonochem 15(5), page. 898 – 902.
    Cvijan, M., and Fujinato, S., 2012. Cylindrospermopsis raciborskii (Cyanoprokaryota) – potential invasive and toxic species in Serbia. Botanica SERBICA 36(1), page. 3-8.
    Doulah, M. S., 2010. Mechanism of disintegration of biological cells in ultrasonic cavitation. Biotechnol bioeng 19(5), page. 649 – 660.
    Ellwart, J. W., Brettel, H., Kober, L. O., 1988. Cell membrane damage by ultrasound at different cell concentrations. Ultrasound Med Biol, 14(1), page. 43 - 50.
    Falconer, 1993. Algal toxins in seafood and drinking water. Academic Press, New York.
    Falconer, 1996. Potential impact on human health of toxic cyanobacteria. Phycologia 35(6): page. 6–11.
    Falconer. 2005. Cyanobacterial toxins of drinking water supplies: cylindrospermopsins and microcystins. CRC, Boca Raton.
    Fan, J. B., Jean, J. J. B., Salathia, N., Liu, R., Kaeser, G. E., and Yung, Y. C., 2016. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, page. 241-244.
    Fitzgeorge, R., Clark, S., Keevil, C., 1994. Routes of intoxication. In: Codd GA, Jefferies TM, Keevil CW, Potter P, ed. Detection methods for cyanobacterial toxins. Cambridge, Royal Society of Chemistry, page 69–74.
    Fykse, E. M., Olsen, J. S., Skogan, G., 2003. Application of sonication to release DNA from Bacillus cereus for quantitative detection by real-time PCR. J. Microbiol Meth. 55(1), page. 1-10.
    Harada, K. I., Ozaki, K., Tsuzuki, S., Kato, H., Hasegawa, M., Kuroda, E. K., Arii, S., and Tsuji, K. 2009. Blue color formation of cyanobacteria with beta-cyclocitral. J. Chem. Ecol. 35, page. 1295–1301.
    Harrison, S. T. L., 1991. Bacterial cell disruption : a key unit operation in the recovery of intracellular producs. Biotechnol. Adv. 9(2), page. 217 -240.
    Harun, R., Jason, W. S. Y., Cherrington, T., and Danquah, M. K., 2011. Exploring alkalina pre-treatment of microalgal biomass for bioethanol production. Appl. Energy 88(10), page. 3464 – 3467.
    Hosikian, A., Lim, S., Halim, R., Danquah, M.K., 2010. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects. International J Chem Eng 18, page. 1-12.
    Ikawa, M., Sasner, J. J., and Haney, J. F., 2001. Activity of cyanobacterial and algal odor compounds found in lake waters on green alga Chlorella pyrenoidosa growth. Hydrobiologia 443, page. 19–22.
    Jones, W. W, and Sauter, S. 2005. Distribution and Abudance of Clyindrospermopsis raciborskii in Indiana Lakes and Reservoirs. School of Public and Environmental Affairs, Indiana University.
    Jüttner, F, Susan, B. W., Elert, E. V., and Köster, O., 2010. Β-cyclocitral, a Grazer Defense Signal Unique to Cyanobacterium Microcystis. Journal of Chemical Ecology 36, page. 1387-1397.
    Jüttner, F., and Hoflacher, B., 1985. Evidence of beta-carotene 7, 8 (7,8) oxygenase (betacyclocitral, crocetindial generating) in Microcystis. Arch. Microbiol. 141, page. 337–343.
    Kuiper, G. T., Falconer, I., Fitzgerald, J. 1999. Human health aspects. In: Chorus I, Bartram J, ed. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. E & FN Spon on behalf of the World Health Organization, page. 113–154.
    Kula, M. R., and Schutte, H., 1987. Purification of protein and the disruption of microbial cells. Biotechnol Prog 3(1), page. 31 – 42.
    Lee, A. K., David, M. L., and Peter, J. A., 2012. Disruption of microalgal cells for the extraction of lipids for biofuels: Process and specific energy requirements. Biomass and bioenergy 46, page. 89 – 101.
    Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., and Oh, H. M., 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1), page 75-77.
    Liu, Y., Zhao, Y., and Feng, X., 2008. Energy analysis for a freeze-drying process. Appl Thermal Eng 28(7), page. 675 – 690.
    Lund, H. C., and Lund, J. W., 1995. Freshwater Algae – Their Microscopic World Explored. Biopress, England.
    Mazur, M., Gladkowski, W., Srcek, V. G., Radosevic, K., Maciejewska, G., and Wawrzenczyk, C., 2017. Regio- and enantioselective microbial hydroxilation and evaluation of cytotoxic activity of β-cyclocitral-derived halolactones. PloS One. 12(8), page. 1 – 12.
    Middleberg, A. P. J., 1995. Process-scale disruption of microorganisms. Biotechnol. Adv. 13(3), page. 491 – 495.
    Morist, A., Montesinos, J. L., Cusido, J.A., and Godia,F., 2001. Recovery and treatment of Spirulina platensis cells cultured in a continous photobioreactor to be used as food. Process Biochem, 37(5), page. 535 – 547.
    Ohtani, I., Moore, R.E., and Runnegar, M.T.C., 1992. Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. Journal of the American Chemical Society 114, page. 7942–7944.
    Orr, et. al. 2010. Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful algae 9(3), page. 243-254.
    Ozaki, K., Ohta, A., Iwata, C., Horikawa, A., Tsuji, K., Ito, E., Ikai, Y., Harada, K. I., 2008. Lysis of cyanobacteria with volatile organic compounds, Chemosphere 71, page. 1531–1538.
    Ratti, C., 2001. Hot air and freeze-drying of high value foods: a review. J. Food Eng. 49(4), page. 311 – 319.
    Reynolds, C. S., R. L. Oliver and A. E. Walsby. 1987. Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research 21(3): 379-390.
    Rodgers, J. H., Johnson, B. M., Bishop, W. M., 2010. Comparison of three algaecides for controlling the density of Prymnesium parvum, J. Am. Water Resour. Assoc. 46, page. 153–160.
    Seetharam, R., and Sharma, S., 1991. Purification and analysis of recombinant proteins, Macel Dekker, New York.
    Sigee, D. C., 2005. Freshwater Microbiology. England, John Wiley & Sons.
    Sivonen, K., and Jones, J., 1999. Cyanobacterial toxins. In: Chorus I, Bartram J, ed. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. E & FN Spon on behalf of the World Health Organization, page 41–112.
    Suslick, K. S. 1989. The chemical effects of ultrasound. Sci Am. 260(2), page. 80-86.
    Turner, P. C., Gammie, A. J., Hollinrake, K., and Codd, G. A., 1990. Pneumonia associated with cyanobacteria. British Medical Journal 300, page. 1440–1441.
    Wiltshire, K. H., Boersma, M., Moller, A., and Buhtz, H., 2000. Extraction of pigments and fatty acids from the green algae Scenedesmus obliquus (Chloyophyceae). Aqua Ecol 34(2), page. 119 – 126.
    Yoo, S., Carmichael, W., Hoehn, R., Hrudey, S., 1995. Cyanobacterial (blue-green algal) toxins: A resource guide. Denver, CO, American Water Works Association Research Foundation. Page 229.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE