簡易檢索 / 詳目顯示

研究生: 李育寬
Li, Yu-Kuan
論文名稱: 近斷層觸發液化土層之樁土互制反應數值模擬
Numerical Modeling of Pile-Soil Interactions in Liquefied Stratum Triggered by Near-Fault Motions
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 175
中文關鍵詞: 三維樁周應力分佈p-y曲線土壤液化振動台動態試驗模擬液化樁土互制行為近斷層地震
外文關鍵詞: Pile circumference stress distribution, p-y curves, Soil liquefaction, Shaking table test dynamic numerical simulation, Liquefaction pile-soil interaction, Near-fault motions
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以經驗證之數值架構,模擬受近斷層波形觸發之液化土層中樁土互制的行為,驗證流程包括對標度槽基樁側推試驗進行模擬與比對,以單樁受側推時及反覆加載下之行為為例,接續以二維架構對大型振動台空樁及單樁試驗與模擬的結果進行比對,最後將根據此模型建立的方法及流程對後續規劃之近斷層振動台樁土互制模型試驗,進行模擬預測及實驗規劃。由三維模型求得樁周表面的應力分佈狀態,將不同深度的應力分佈沿樁周積分以計算不同深度下的p-y曲線,顯示在淺層由界面元素以及土壤元素計算的應力分佈及p-y曲線在小位移時兩者一致性較高,當位移增加時兩者出現明顯差異,而在較深處不管是小位移還是大位移時,兩者行為皆相似;大型振動台實驗與二維程式模擬結果比對,顯示利用UBC3D-PLM土壤組構律及約束自由度邊界描述液化情形下樁土互制行為之合理性,根據此模型建立之流程對後續近斷層振動台樁土互制模型試驗進行模擬預測及實驗規劃,顯示不同的樁頂質量載重慣性力將會對表層土壤近場處的行為有顯著的影響,且液化前樁身行為主要由上部載重慣性力控制,而液化後同時受到土體位移及慣性力之影響。此外不同類型近斷層震動模擬結果顯示,在高頻脈衝中PGA及PGV與初始液化的發生時間較無相關,而在顯著脈衝中PGA對初始液化行為的發生有較顯著的影響。

    This study uses a verified numerical modeling framework to simulate the behavior of pile-soil interactions in the liquefied stratum triggered by near-fault motions. The verification process includes numerical simulation and comparison between the results of push-over or cyclic loading tests in a calibration chamber and the numerical simulation results. In addition, it also compares the results of the large-scale shaking table tests with and without a pile to the results of the numerical simulation in two-dimensional framework. Finally, numerical simulation prediction and experimental planning of the near-fault pile-soil interaction model shaking table test will be done according to the method and process established by this verified numerical modeling framework. The stress distribution of the pile’s circumference is obtained from the three-dimensional model, and the stress distribution at different depths is integrated along the pile’s circumference to calculate the p-y curves at different depths. The comparison between the large-scale shaking table test results and the two-dimensional program numerical simulation results shows the rationality of using the UBC3D-PLM constitutive law and tied degrees of freedom boundary condition to describe the pile-soil interactions behavior in a liquefied stratum. The numerical simulation prediction results show that different pile’s head mass will have a significant effect on the behavior of the shallow stratum in the near field. Pile’s behavior is mainly controlled by the pile’s head inertial force before liquefaction. During the liquefaction process, pile’s behavior is not only controlled by the inertial force but also the kinematic force resulting from ground displacements. In addition, the numerical simulation results of different types of near-fault motions show that the initial liquefaction state is triggered before the PGA and PGV in high-frequency pulse, while the PGA in significant pulse will trigger the initial liquefaction state.

    摘要 I EXTENDED ABSTRACT II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法與流程 2 1-3 論文架構 4 第二章 文獻回顧 5 2-1 樁受到側向荷載之分析方法 5 2-1-1 地盤反力分析方法 5 2-1-2 p-y曲線分析方法 7 2-1-3 美國石油工程協會(API)建議之砂土p-y曲線 8 2-1-4 有限元素分析方法 10 2-2 側向加載時樁土互制反應 11 2-2-1 側向加載時樁周應力分佈 11 2-2-2 以數值方法分析樁周應力 13 2-2-3 反覆循環加載下樁土互制反應 15 2-3 土壤液化及對基樁之影響 17 2-3-1 土壤液化之定義與種類 17 2-3-2 液化對基樁之影響 18 2-4 液化之樁土互制分析方法 21 2-4-1 擬靜態分析 21 2-4-2 動態數值分析 24 第三章 PLAXIS程式及有限元素分析方法 27 3-1 分析軟體-PLAXIS 27 3-2 PLAXIS基本操作流程 27 3-3 PLAXIS材料參數 28 3-3-1 硬化土壤模型(Hardening Soil model) 28 3-3-2 小應變硬化土壤模型(Hardening Soil model with Small-Strain Stiffness) 31 3-3-3 UBC3D-PLM土壤模型 33 3-4 界面元素(Interface Element) 38 3-5 PLAXIS有限元素運算原理 40 3-5-1 靜力運算原理 40 3-5-2 動力運算原理 41 3-6 動力邊界條件 44 3-6-1 黏滯邊界(Viscous Boundary) 44 3-6-2 自由場邊界(Free-Field)以及柔性基礎(Compliant Base) 45 3-6-3 約束自由度(Tied Degrees of Freedom) 46 第四章 標度槽試驗模型建立與分析 47 4-1 實驗概述 47 4-2 模型建立 48 4-2-1 模型尺寸及幾合 48 4-2-2 材料參數 50 4-2-3 模擬步驟及分析階段 54 4-3 模型驗證結果 55 4-3-1 單向加載試驗之結果 55 4-3-2 反覆側推加載試驗之結果 57 4-4 土壤反力及p-y曲線 61 4-4-1 樁土界面元素之土壤反力 61 4-4-2 以接觸土壤元素應力推估之土壤反力 74 4-4-3 不同方法之結果比較 83 第五章 大型振動台試驗模型建立與分析 92 5-1 實驗概述 92 5-2 模型建立 93 5-2-1 模型尺寸及幾合 93 5-2-2 動力邊界條件以及材料阻尼 96 5-2-3 材料參數 103 5-2-4 模擬步驟及分析階段 106 5-3 模型驗證結果 108 5-3-1 空樁振動台試驗之結果 109 5-3-2 單樁振動台試驗之結果 117 第六章 近斷層振動台樁土互制模型試驗規劃與預測 126 6-1 振動台試驗規劃 126 6-2 樁頂質量載重慣性力之影響 129 6-3 不同類型近斷層地震歷時之影響 141 第七章 結論與建議 167 7-1 結論 167 7-2 建議 169 參考文獻 170

    林炳森、張文忠,2006,現地模擬地震之液化試驗與碼頭動態監測研究(1/4),交通部運輸研究所,研究報告。
    翁作新、陳家漢、程漢瑋、吳繼偉,2006,大型振動台剪力盒土壤液化試驗(III)-飽和越南砂試體受振沉陷之探討,國家地震工程研究中心,研究報告。
    陳家漢,2017,以振動台試驗探討液化地盤中單樁受震樁土互制關係,國立台灣大學土木工程學系,博士論文。
    張嘉偉,1997,圓錐貫入試驗在粉砂中之標定,國立交通大學土木工程學系,碩士論文。
    張竣閔,2005,小應變中空扭剪試驗局部變形監測,國立交通大學土木工程學系,碩士論文。
    張紹綸,2008,孔隙水壓模式應用於液化影響樁基礎之波動方程分析,淡江大學土木工程學系,碩士論文。
    張硯翔,2020,以邊界應力控制標度槽探討長樁側推下之樁土互制反應,國立成功大學土木工程學系,碩士論文。
    黃俊鴻、鍾明劍,2006,液化流動壓作用下側向樁之簡化解析解,中國土木水利工程學刊,第十八卷第四期,第465-474頁。
    蕭廷翰,2017,長樁模型於飽和粉土質砂中之反覆加載反應,國立成功大學土木工程學系,碩士論文。
    薛朝光,2004,場鑄單∕群樁側向荷載非線性行為之研究,國立海洋大學河海工程學系,博士論文。
    謝明志、陳志芳、林炳森、張文忠、黃安斌,2009,現地模擬地震之液化試驗與碼頭動態監測研究(3/3),交通部運輸研究所,研究報告。
    API, R. (2007). 2A-WSD 2007. Recommended practice for planning, designing and constructing fixed offshore platforms, American Petroleum Institute.
    Beaty, M. H., and Byrne, P. M. (2011). UBCSAND constitutive model version 904aR. Documentation report, UBCSAND constitutive model on Itasca UDM Website.
    Beaty, M. H., and Perlea, V. G. (2011). Several observations on advanced analyses with liquefiable materials. 31st Annual USSD Conference, San Diego, California, 1369-1397.
    Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482-1498.
    Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65-78.
    Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, W. D., and Abghari, A. A. (1999). Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng., ASCE, 125(9), 750-759.
    Briaud, J. L., and Smith, T. D. (1983). Using the pressuremeter curve to design laterally loaded piles. Proceedings. 15th Annual OTC, 1(4501), 495-502.
    Casagrande, A. (1936). Characteristics of cohesionless soils affecting the stability of slopes and earth fills. Journal of the Boston Society of Civil Engineers, 257-275.
    Chang, Y. L. (1937). Discussion on lateral pile-loading tests by Feagin. Transactions of the ASCE, 102(1959), 272-278.
    Chang, B. J., and Hutchinson, T. C. (2013). Experimental evaluation of p-y curves considering development of liquefaction. J. Geotech. Geoenviron. Eng., 139(4), 577-586.
    Duncan, J. M., and Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. J. Soil Mech. and Found. Div., ASCE, 96(5), 1629-1653.
    Fan, C. C., and Long, J. H. (2005). Assessment of existing method for predicting soil response of laterally loaded piles in sand. Comput. Geotech., 32(4), 274-289.
    Finn, W. D. L., and Fujita, N. (2002). Piles in liquefiable soils: seismic analysis and design issues. Soil Dynamics and Earthquake Engineering, 22(9-12), 731-742.
    Fonseca, A. C. V. (2015). Diameter effects of large scale monopiles. A theoritical and numerical investigations of the soil-pile interaction response. MSc thesis, University of Porto - FEUP.
    Giannakos, S., Gerolymos, N., and Gazetas, G. (2012). Cyclic lateral response of piles in dry sand: finite element modeling and validation. Comput. Geotech., 44, 116-131.
    Hazen, A. (1920). Hydraulic-fill dams. ASCE, 83, 1717-1745.
    Hardin, B. O., and Drnevich, V. (1972). Shear modulus and damping in soils. J. Soil Mech. Found. Div., 98(7), 667-692.
    Hetenyi, M. (1946). Beams on elastic foundation. University of Michigan Press Ann Arbor.
    Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proc. 11th Int. Conf. on Soil Mech. and Found. Engrg., 1, 321-376.
    Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451.
    Jacky, J. (1944). The coefficient of earth pressure at rest. J. Soc. Hung. Eng. Arch., 1, 355-358.
    Kondner, R. L., and Zelasko, J. S. (1963). A hyperbolic stress-strain formulation for sand. Proc. 2nd Pan-American Conf. on Soil Mech. and Found. Eng., Brazil, 289-324.
    Koga, Y., and Matsuo, O. (1990). Shaking table tests of embankments resting on liquefiable sandy ground. Soils and Foundations, 30(4), 163-174.
    Kuhlemeyer, R. L., and Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, ASCE, 99(5), 421-427.
    Liu, L., and Dobry, R. (1995) Effect of liquefaction on lateral response of piles by centrifuge model tests. NCEER Bulletin, 9(1), 8.
    Liyanapathirana, D. S., and Poulos, H. G. (2005). Pseudostatic approach for seismic analysis of piles in liquefying soil. J. Geotech. Geoenviron. Eng., ASCE, 131(12), 1480-1487.
    Lin, H., Ni, L., Suleiman, M., and Raich, A. (2015). Interaction between laterally loaded pile and surrounding soil. J. Geotech. Geoenviron. Eng., 141(4), 1-11.
    Lysmer, J., and Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the Soil Mechanics and Foundations Division, ASCE, 95(4), 859-878.
    Masing, G. (1926). Eigenspannungen und ver testigung beim Messing. In Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, 332-335.
    Matlock, H., and Reese, L. C. (1960). Generalized solutions for laterally loaded piles. Journal of Soil Mech. and Foundation Division, ASCE, 86(5), 63-91.
    Matlock, H. (1970). Correlations for design of laterally loaded piles in soft clay. Proceedings. 2nd Annual OTC, 1(1204), 577-594.
    Makra, A. (2013). Evaluation of the UBC3D-PLM constitutive model for prediction of earthquake induced liquefaction on embankment dams, MSc Thesis, TU Delft.
    McClelland, B., and Focht, J. A. Jr. (1958). Soil modulus for laterally loaded piles. Trans., ASCE, 123, 1049-1063.
    Oka, F., Yashima, A., Shibata, T., Kato, M., and Uzuoka, R. (1994). FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model. Applied Scientific Reasearch, 52(3), 209-245.
    Petalas, A., and Galavi, V. (2013). Plaxis liquefaction model UBC3D-PLM. Delft, The Netherlands, Plaxis bv.
    Plaxis b. v. (2019). Plaxis 2D version 2019, reference manual, Delft, Netherlands.
    Plaxis b. v. (2019). Plaxis 3D version 2019, reference manual, Delft, Netherlands.
    Puebla, H., Byrne, M., and Philips, R. (1997). Analysis of CANLEX liquefaction embankments: prototype and centrifuge models. Can. Geotech. J., 34(5), 641-657.
    Reese, L. C., Cox, W. R., and Koop, F. D. (1974). Analysis of laterally loaded piles in sand. Proceedings. 6th Annual OTC, 2(2080), 473-485.
    Reese, L. C., Cox, W. R., and Koop, F. D. (1975). Analysis of laterally loaded piles in stiff clay. Proceedings. 7th Annual OTC, 2(2312), 672-690.
    Reese, L. C., and Van Impe, W. F. (2010). Single pile and pile groups under lateral loading, 2nd Edition.
    Rollins, K. M., Gerber, T. M., Lane, J. D., and Ashford, S. A. (2005). Lateral resistance of a full-scale pile group in liquefied sand. J. Geotech. Geoenviron. Eng., ASCE, 131(1), 115-125.
    Sheil, B. B., and McCabe, B. A. (2017). Biaxial loading of offshore monopiles: Numerical modeling. Int. J. Geomech, 17(2), 04016050.
    Smith, T. D. (1987). Pile horizontal modulus values. J. Geotech. Geoenviron. Eng., ASCE, 113(9), 1040-1044.
    Terzaghi, K. (1955). Evaluation of coefficients of subgrade reaction. Geotechnique, 5(4), 297-326.
    Tokimatsu, K., Mizuno, H., and Kakurai, M. (1996). Building damage associated with geotechnical problems. Special issue of Soils and Foundations, 219-234.
    Tokimatsu, K., and Asaka, Y. (1998). Effects of liquefaction-induced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake. Special issue of Soils and Foundations, 163-177.
    Tsegaye, A. (2010). Plaxis liquefaction model. External report. PLAXIS knowledge base.
    Winkler, E. (1867). Theory of elasticity and strength. Dominicus Prague.
    Wolf, T. K., Rasmussen, K. L., Hansen, M., Roesen, H. R., and Ibsen, L. B. (2013). Assessment of p-y curves from numerical methods for a non-slender monopile in cohesionless soil. Department of Civil Engineering, Aalborg University, DCE Technical Memorandum, No. 024.
    Zhang, L., Silva, F., and Grismala, R. (2005). Ultimate lateral resistance to piles in cohesionless soils. J. Geotech. Geoenviron. Eng., 131(1), 78-83.
    Zienkiewicz, O. C., Chan, A. H. C., Pastor M., Paul, D. K., and Shiomi T. (1990). Static and dynamic behaviour of soils- a rational approach to quantitative solutions: I. Fully saturated problems. Proceedings of the Royal Society of London, A429, 285-309.

    無法下載圖示 校內:2026-08-16公開
    校外:2026-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE