| 研究生: |
倪至萱 Ni, Chih-Hsuan |
|---|---|
| 論文名稱: |
岩石中磁性礦物磁區結構之研究 Study on magnetic domain structures of magnetic minerals in the rocks |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 磁性礦物 、磁力顯微鏡 、微觀磁結構 、自然殘磁 |
| 外文關鍵詞: | magnetic minerals, magnetic force microscopy, microscopic magnetic structure, normal remanent magnetization |
| 相關次數: | 點閱:113 下載:32 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究岩石內磁性礦物的一個基本任務為了解天然礦物中殘磁的粒度依賴性與其穩定性,礦物的顆粒尺寸、形狀和結晶結構影響其磁區結構,岩石殘磁由岩石形成過程所決定其屬於之熱殘磁或是化學殘磁。前人量測磁學性質以巨觀研究為主,用於鑑定磁性礦物種類、特性、殘磁大小等,巨觀量測方法獲得資訊為岩樣中磁性礦物所有磁訊號的總和平均值,容易忽略或掩蓋掉微小的細節,且無法準確區分不同礦物之微觀磁區結構,因此,本研究利用微觀尺度量測方法磁力顯微鏡,分別對中洋脊玄武岩、紐西蘭假玄武玻璃以及臺灣西南部泥岩,三種不同區域、岩性的樣本,探討岩石形成過程對磁性礦物磁特性之影響,在奈米尺度下對單顆磁顆粒之磁區結構重建,並且量測磁場方向和推測其殘磁紀錄種類,輔助巨觀磁學量測無法解釋的細節。研究結果分別為:(1)中洋脊除了上部枕狀玄武岩中鈦磁鐵礦外,下部蓆狀岩牆中磁鐵礦之柵狀組織,以微觀磁學性質證實亦能貢獻海底磁性異常;(2)紐西蘭假玄武玻璃中,在微觀磁結構中,新生成磁鐵礦由顆粒尺寸主導,具有穩定方向單磁區之熱殘磁;(3)臺灣西南部泥岩,不同硫化鐵其生長時序與形狀異向性皆可能影響古地磁之判斷。這些結果與巨觀磁學研究相輔相成,磁力顯微鏡技術可以識別單個磁性礦物的微觀磁結構,並提供磁場方向(地磁場的指標),故研究結果顯示:磁力顯微鏡技術在地球科學領域上具有應用價值。
Paleomagnetism is the study of the record of the Earth's magnetic field in the rocks. The macro-magnetic analysis growth has completed, but micro-magnetic structure of magnetic minerals rarely known. We sought to reveal the growth process of magnetic minerals in the three types of rocks as it pertains to their magnetic domain structures. The studied including mid-ocean ridge basalts in the Southeastern Indian Ridge, pseudotachylyte in New Zealand, and mudstone in Southwestern Taiwan. In this study, a scanning electron microscope (SEM) equipped with the energy dispersive spectroscopy (EDS) were used for mineral identification, and magnetic force microscopy (MFM) was utilized to examine magnetic domain structures. The results supply that the source of ocean anomalies is not only carried by titanomagnetite minerals in pillow basalt but also magnetite in sheet-diked. The neoformed magnetite with consistent direction in the pseudotachylyte vein may be used as the indicator for geomagnetic field at that time. The timing of pyrrhotite or greigite formation can vary enough to give different remanence in mudstone. It suggests that care should be taken when interpreting magnetic data from sediments. The MFM technique can provide more magnetic information and is a powerful tool that can be potentially applied in the geomagnetic and geological fields.
李元希、謝凱旋、黃敦友、何信昌、陳華玫、張徽正(1999)。台灣西南部前陸盆地的演化,中國地質學會八十八年年會,第246-248頁。
謝凱旋、洪崇勝(2010)。西南部麓山帶的地層系統和對比問題,經濟部地質調查所第六屆地層研討會論文集,第45-53頁。
Allen, J. L. (2005). A multi-kilometer pseudotachylyte system as an exhumed record of earthquake rupture geometry at hypocentral depths (Colorado, USA). Tectonophysics, 402(1-4), 37-54.
Allerton, S., Pariso, J. E., Stokking, L., & Mcclelland, E. (1995). Origin of the natural remanent magnetism of sheeted dikes in hole 504B cored during legs 137 and 140. Proceedings of the Ocean Drilling Program, Scientific Results, 137/140, 263-270.
Andersen, T. B., & Austrheim, H. (2006). Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica. Earth and Planetary Science Letters, 242(1–2), 58-72.
Andersen, T. B., Mair, K., Austrheim, H., Podladchikov, Y. Y., & Vrijmoed, J. C. (2008). Stress release in exhumed intermediate and deep earthquakes determined from ultramafic pseudotachylyte. Geology, 36(12), 995-998.
Bakuzis, A. F., & Morais, P. C. (2001). On the origin of the surface magnetic anisotropy in manganese–ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 226-230, 1924-1926.
Bezaeva, N. S., Chareev, D. A., Rochette, P., Kars, M., Gattacceca, J., Feinberg, J. M., Sadykov, R. A., Kuzina, D. M., & Axenov, S. N. (2016). Magnetic characterization of non-ideal single-domain monoclinic pyrrhotite and its demagnetization under hydrostatic pressure up to 2GPa with implications for impact demagnetization. Physics of the Earth and Planetary Interiors, 257, 79-90.
Bleil, U., & Petersen, N. (1983). Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature, 301(5899), 384-388.
Bozorth, R. M. (1993). Ferromagnetism. Ferromagnetism, by Richard M. Bozorth, pp. 992.
Buddington, A., & Lindsley, D. (1964). Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology, 5(2), 310-357.
Butler, R. F. (1992). Paleomagnetism: magnetic domains to geologic terranes. Boston: Blackwell Scientific Publications.
Butler, R. F., & Banerjee, S. K. (1975). Theoretical single‐domain grain size range in magnetite and titanomagnetite. Journal of Geophysical Research, 80(29), 4049-4058.
Chang, L., Roberts, A. P., Muxworthy, A. R., Tang, Y., Chen, Q., Rowan, C. J., Liu, Q., & Pruner, P. (2007). Magnetic characteristics of synthetic pseudo-single-domain and multi-domain greigite (Fe3S4). Geophysical Research Letters, 34(24), L24304.
Chikazumi, S. (1964). Physics of magnetism: Wiley.
Chou, Y. M., Song, S. R., Aubourg, C., Lee, T. Q., Boullier, A. M., Song, Y. F., Yeh, E. C., Kuo, L. W., & Wang, C. Y. (2012). An earthquake slip zone is a magnetic recorder. Geology, 40(6), 551-554.
Christie, D. M., Carmichael, I. S., & Langmuir, C. H. (1986). Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters, 79(3-4), 397-411.
Clark, D. (1984). Hysteresis properties of sized dispersed monoclinic pyrrhotite grains. Geophysical Research Letters, 11(3), 173-176.
Craddock, J. P., & Magloughlin, J. F. (2005). Calcite strains, kinematic indicators, and magnetic flow fabric of a Proterozoic pseudotachylyte swarm, Minnesota River valley, USA. Tectonophysics, 402(1-4), 153-168.
Cullity, B. D., & Graham, C. D. (2011). Introduction to magnetic materials: John Wiley & Sons.
Day, R., Fuller, M., & Schmidt, V. A. (1977). Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4), 260-267.
De Groot, L. V., Fabian, K., Bakelaar, I. A., & Dekkers, M. J. (2014). Magnetic force microscopy reveals meta-stable magnetic domain states that prevent reliable absolute palaeointensity experiments. Nature Communications, 5, 4548
Dekkers, M. J. (1989). Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM as function of grain size. Physics of the Earth and Planetary Interiors, 57(3), 266-283.
Dinarès-Turell, J., & Dekkers, M. (1999). Diagenesis and remanence acquisition in the Lower Pliocene Trubi marls at Punta di Maiata (southern Sicily): palaeomagnetic and rock magnetic observations. Geological Society, London, Special Publications, 151(1), 53-69.
Dunlop, D. (1990). Developments in rock magnetism. Reports on Progress in Physics, 53(6), 707-792.
Dunlop, D. J. (1998). Thermoremanent magnetization of nonuniformly magnetized grains. Journal of Geophysical Research: Solid Earth, 103(B12), 30561-30574.
Dunlop, D. J. (2002). Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research: Solid Earth, 107(3), 4-1 - 4-22.
Dunlop, D. J. (2014). High-temperature susceptibility of magnetite: A new pseudo-single-domain effect. Geophysical Journal International, 199(2), 707-716.
Dunlop, D. J., & Carter-Stiglitz, B. (2006). Day plots of mixtures of superparamagnetic, single-domain, pseudosingle-domain, and multidomain magnetites. Journal of Geophysical Research: Solid Earth, 111, B12S09.
Enkin, R., & Dunlop, D. (1987). A micromagnetic study of pseudo single‐domain remanence in magnetite. Journal of Geophysical Research: Solid Earth, 92(B12), 12726-12740.
Fabbri, O., Lin, A., & Tokushige, H. (2000). Coeval formation of cataclasite and pseudotachylyte in a Miocene forearc granodiorite, southern Kyushu, Japan. Journal of Structural Geology, 22(8), 1015-1025.
Fabian, K., & Hubert, A. (1999). Shape-induced pseudo-single-domain remanence. Geophysical Journal International, 138(3), 717-726.
Feinberg, J. M., Scott, G. R., Renne, P. R., & Wenk, H.-R. (2005). Exsolved magnetite inclusions in silicates: Features determining their remanence behavior. Geology, 33(6), 513-516.
Ferré, E. C., Geissman, J., Demory, F., Gattacceca, J., Zechmeister, M., & Hill, M. (2014). Coseismic magnetization of fault pseudotachylytes: 1. Thermal demagnetization experiments. Journal of Geophysical Research: Solid Earth, 119(8), 6113-6135.
Ferré, E. C., Geissman, J. W., Chauvet, A., Vauchez, A., & Zechmeister, M. S. (2015). Focal mechanism of prehistoric earthquakes deduced from pseudotachylyte fabric. Geology, 43(6), 531-534.
Ferré, E. C., Geissman, J. W., & Zechmeister, M. S. (2012). Magnetic properties of fault pseudotachylytes in granites. Journal of Geophysical Research: Solid Earth, 117(B1), B01106.
Frandsen, C., Stipp, S. L. S., McEnroe, S. A., Madsen, M. B., & Knudsen, J. M. (2004). Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Physics of the Earth and Planetary Interiors, 141(2), 121-129.
Gee, J., Schneider, D. A., & Kent, D. V. (1996). Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth and Planetary Science Letters, 144(3-4), 327-335.
Halgedah, S., & Fuller, M. (1983). The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo‐single‐domain behavior. Journal of Geophysical Research: Solid Earth, 88(B8), 6505-6522.
Harrison, R. J., & Feinberg, J. M. (2008). FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems, 9(5), Q05016.
Harrison, R. J., & Putnis, A. (1996). Magnetic properties of the magnetite-spinel solid solution: Curie temperatures, magnetic susceptibilities, and cation ordering. American Mineralogist, 81(3-4), 375-384.
Heider, F., & Williams, W. (1988). Note on temperature dependence of exchange constant in magnetite. Geophysical Research Letters, 15(2), 184-187.
Horng, C.-S., & Roberts, A. P. (2006). Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum. Earth and Planetary Science Letters, 241(3), 750-762.
Horng, C. S., & Chen, K. H. (2006). Complicated magnetic mineral assemblages in marine sediments offshore of southwestern Taiwan: possible influence of methane flux on the early diagenetic process. Terrestrial Atmospheric and Oceanic Sciences, 17(4), 1009-1026.
Horng, C. S., Huh, C. A., Chen, K. H., Lin, C. H., Shea, K. S., & Hsiung, K. H. (2012). Pyrrhotite as a tracer for denudation of the Taiwan orogen. Geochemistry, Geophysics, Geosystems, 13(8), Q08Z47.
Horng, C. S., Laj, C., Lee, T. Q., & Chen, J. C. (1992). Magnetic characteristics of sedimentary rocks from the Tsengwen-chi and Erhjen-chi sections in southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 3(4), 519-532.
Horng, C. S., Torii, M., Shea, K. S., & Kao, S. J. (1998). Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164(3–4), 467-481.
International Hydrographic Organization, Intergovernmental Oceanographic Commission, The IHO-IOC GEBCO Cook Book, IHO Publication B-11, Monaco, Dec. 2016, pp.429.
Jiang, W. T., Horng, C. S., Roberts, A. P., & Peacor, D. R. (2001). Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 193(1–2), 1-12.
Johnson, H. P., & Hall, J. M. (1978). A detailed rock magnetic and opaque mineralogy study of the basalts from the Nazca Plate. Geophysical Journal International, 52(1), 45-64.
Kao, S. J., Horng, C. S., Roberts, A. P., & Liu, K. K. (2004). Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation. Chemical Geology, 203(1), 153-168.
Kent, D. V., & Gee, J. (1994). Grain size-dependent alteration and the magnetization of oceanic basalts. Science, 265(5178), 1561-1563.
Kono, M. (2010). Geomagnetism: Treatise on Geophysics: Elsevier.
Krása, D., Shcherbakov, V. P., Kunzmann, T., & Petersen, N. (2005). Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophysical Journal International, 162(1), 115-136.
Langridge, R., Ries, W., Litchfield, N., Villamor, P., Van Dissen, R., Barrell, D., Rattenbury, M., Heron, D., Haubrock, S., & Townsend, D. (2016). The New Zealand active faults database. New Zealand Journal of Geology and Geophysics, 59(1), 86-96.
Larrasoaña, J. C., Roberts, A. P., Musgrave, R. J., Gràcia, E., Piñero, E., Vega, M., & Martínez-Ruiz, F. (2007). Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth and Planetary Science Letters, 261(3–4), 350-366.
Levi, S., & Merrill, R. T. (1978). Properties of single‐domain, pseudo‐single‐domain, and multidomain magnetite. Journal of Geophysical Research: Solid Earth, 83(B1), 309-323.
Levy, D., Giustetto, R., & Hoser, A. (2012). Structure of magnetite (Fe3O4) above the Curie temperature: A cation ordering study. Physics and Chemistry of Minerals, 39(2), 169-176.
Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4), Q04006.
Magloughlin, J. F. (1992). Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustal levels: the cataclasite-pseudotachylyte connection. Tectonophysics, 204(3-4), 243-260.
Mishima, T., Hirono, T., Nakamura, N., Tanikawa, W., Soh, W., & Song, S. R. (2009). Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake. Earth Planets Space, 61(6), 797-801.
Moskowitz, B. M. (1980). Theoretical grain size limits for single-domain, pseudo-single-domain and multi-domain behavior in titanomagnetite (x= 0.6) as a function of low-temperature oxidation. Earth and Planetary Science Letters, 47(2), 285-293.
Muxworthy, A. R., & Dunlop, D. J. (2002). First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature. Earth and Planetary Science Letters, 203(1), 369-382.
Nakamuraa, N., Hiroseb, T., & Borradaile, G. J. (2002). Laboratory verification of submicron magnetite production in pseudotachylytes-relevance for paleointensity studie. Earth and Planetary Science Letters, 201(1), 13-18.
Nishitani, T., & Kono, M. (1983). Curie temperature and lattice constant of oxidized titanomagnetite. Geophysical Journal of the Royal Astronomical Society, 74(2), 585-600.
Obi, Y., Fujimori, H., & Saito, H. (1976). Magnetic domain structure of an amorphous Fe-PC alloy. Japanese Journal of Applied Physics, 15(4), 611-617.
O'Donovan, J., & O'Reilly, W. (1977). The preparation, characterization and magnetic properties of synthetic analogues of some carriers of the palaeomagnetic record. Journal of Geomagnetism and Geoelectricity, 29(4), 331-344.
Ozdemir, O., Xu, S., & Dunlop, D. J. (1995). Closure domains in magnetite. J. Geophys. Res, 100, 2193-2209.
Pariso, J. E., & Johnson, H. P. (1991). Alteration processes at deep sea drilling project/ocean drilling program hole 504B at the Costa Rica rift: Implications for magnetization of oceanic crust. Journal of Geophysical Research: Solid Earth, 96(B7), 11703-11722.
Park, S.-J., Kim, S., Lee, S., Khim, Z. G., Char, K., & Hyeon, T. (2000). Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres. Journal of the American Chemical Society, 122(35), 8581-8582.
Pei, J., Li, H., Wang, H., Si, J., Sun, Z., & Zhou, Z. (2014). Magnetic properties of the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1), Sichuan Province, China. Earth, Planets and Space, 66(1), 23.
Perfiliev, Y. D., & Sharma, V. K. (2008). Higher oxidation states of iron in solid state: synthesis and their Mössbauer characterization: ACS Publications, 112-123
Pike, C. R., Roberts, A. P., & Verosub, K. L. (1999). Characterizing interactions in fine magnetic particle systems using first order reversal curves. Journal of Applied Physics, 85(9), 6660-6667.
Pokhil, T. G., & Moskowitz, B. M. (1996). Magnetic force microscope study of domain wall structures in magnetite. Journal of Applied Physics, 79(8), 6064-6066.
Pokhil, T. G., & Moskowitz, B. M. (1997). Magnetic domains and domain walls in pseudo-single-domain magnetite studied with magnetic force microscopy. Journal of Geophysical Research B: Solid Earth, 102(B10), 22681-22694.
Richards, J., O'Donovan, J., Hauptman, Z., O'Reilly, W., & Creer, K. (1973). A magnetic study of titanomagnetite substituted by magnesium and aluminium. Physics of the Earth and Planetary Interiors, 7(4), 437-444.
Roberts, A. P., Chang, L., Rowan, C. J., Horng, C. S., & Florindo, F. (2011). Magnetic properties of sedimentary greigite (Fe3S4): An update. Reviews of Geophysics, 49(1), RG1002.
Roberts, A. P., Liu, Q., Rowan, C. J., Chang, L., Carvallo, C., Torrent, J., & Horng, C. S. (2006). Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. Journal of Geophysical Research: Solid Earth, 111, B12S35.
Roberts, A. P., Reynolds, R. L., Verosub, K. L., & Adam, D. P. (1996). Environmental magnetic implications of greigite (Fe3S4) formation in a 3 my lake sediment record from Butte Valley, northern California. Geophysical Research Letters, 23(20), 2859-2862.
Roberts, A. P., & Turner, G. M. (1993). Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters, 115(1-4), 257-273.
Roberts, A. P., & Weaver, R. (2005). Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231(3), 263-277.
Rowan, C. J., Roberts, A. P., & Broadbent, T. (2009). Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 277(1), 223-235.
Schoonen, M. A. A., & Barnes, H. L. (1991). Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes. Geochimica et Cosmochimica Acta, 55(12), 3491-3504.
Schult, A. (1970). Effect of pressure on the Curie temperature of titanomagnetites [(1 - x)Fe3O4 - xTiFe2O4]. Earth and Planetary Science Letters, 10(1), 81-86.
Shaar, R., & Feinberg, J. M. (2013). Rock magnetic properties of dendrites: insights from MFM imaging and implications for paleomagnetic studies. Geochemistry, Geophysics, Geosystems, 14(2), 407-421.
Shand, S. J. (1916). The Pseudotachylyte of Parijs (Orange Free State), and its Relation to ‘Trap-Shotten Gneiss’ and ‘Flinty Crush-Rock’. Quarterly Journal of the Geological Society, 72, 198-221.
Shau, Y. H., Peacor, D. R., & Essene, E. J. (1993). Formation of Magnetic Single-Domain magnetite in Ocean Ridge basalts with implications for sea-floor magnetism. Science, 261(5119), 343-346.
Shau, Y. H., Torii, M., Horng, C. S., & Liang, W. T. (2004). Magnetic properties of mid-ocean-ridge basalts from Ocean Drilling Program Leg 187. Proceedings of the Ocean Drilling Program, Scientific Results, 187.
Shau, Y. H., Torii, M., Horng, C. S., & Peacor, D. R. (2000). Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization. Journal of Geophysical Research: Solid Earth, 105(B10), 23635-23649.
Sibson, R. H. (1975). Generation of Pseudotachylyte by Ancient Seismic Faulting. Geophysical Journal of the Royal Astronomical Society, 43(3), 775-794.
Skinner, B. J., Grimaldi, F., & Erd, R. (1964). Greigite Thio-Spinel of Iron-New Mineral. American Mineralogist, 49(5-6), 543-555.
Soffel, H. (1971). The single domain-multidomain transition in natural intermediate titanomagnetites. Journal of geophysics, 37, 451-470.
Soffel, H. (1977). Pseudo-Single-Domain Effects and Single-Domain Multidomain Transition in Natural Pyrrhotite Deduced From Domain-Structure Observations. Journal of Geophysics-Zeitschrift Fur Geophysik, 42(4), 351-359.
Spaldin, N. A., & Mathur, N. D. (2003). Magnetic Materials: Fundamentals and Device Applications. Physics Today, 56(12), 62-63.
Spray, J. G. (1987). Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane. Journal of Structural Geology, 9(1), 49-60.
Stacey, F. D. (1962). A generalized theory of thermoremanence, covering the transition from single domain to multi-domain magnetic grains. Philosophical Magazine, 7(83), 1887-1900.
Strehlau, J. H., Hegner, L. A., Strauss, B. E., Feinberg, J. M., & Penn, R. L. (2014). Simple and efficient separation of magnetic minerals from speleothems and other carbonates. Journal of Sedimentary Research, 84(11), 1096-1106.
Sui, Y., Yue, L., Skomski, R., Li, X., Zhou, J., & Sellmyer, D. J. (2003). CoPt hard magnetic nanoparticle films synthesized by high temperature chemical reduction. Journal of Applied Physics, 93(10), 7571-7573.
Sutherland, R., Berryman, K., & Norris, R. (2006). Quaternary slip rate and geomorphology of the Alpine fault: Implications for kinematics and seismic hazard in southwest New Zealand. Geological Society of America Bulletin, 118(3-4), 464-474.
Vine, F. J. (1966). Spreading of the Ocean Floor: New Evidence. Science, 154(3755), 1405-1415.
Vine, F. J., & Matthews, D. H. (1963). Magnetic anomalies over oceanic ridges. Nature, 199(4897), 947-949.
Vine, F. J., & Wilson, J. T. (1965). Magnetic anomalies over a young oceanic ridge off Vancouver Island. Science, 150(3695), 485-489.
Wang, D., & Van der Voo, R. (2004). The hysteresis properties of multidomain magnetite and titanomagnetite/titanomaghemite in mid-ocean ridge basalts. Earth and Planetary Science Letters, 220(1-2), 175-184.
Warr, L. N., & van der Pluijm, B. A. (2005). Crystal fractionation in the friction melts of seismic faults (Alpine Fault, New Zealand). Tectonophysics, 402(1), 111-124.
Warr, L. N., van der Pluijm, B. A., Peacor, D. R., & Hall, C. M. (2003). Frictional melt pulses during a ∼1.1 Ma earthquake along the Alpine Fault, New Zealand. Earth and Planetary Science Letters, 209(1–2), 39-52.
Warr, L. N., van der Pluijm, B. A., & Tourscher, S. (2007). The age and depth of exhaumed friction melts along the Alpine fault, New Zealand. Geology, 35(7), 603-606.
Weaver, R., Roberts, A. P., & Barker, A. J. (2002). A late diagenetic (syn-folding) magnetization carried by pyrrhotite: implications for paleomagnetic studies from magnetic iron sulphide-bearing sediments. Earth and Planetary Science Letters, 200(3), 371-386.
Wenk, H. R. (1978). Are pseudotachylites products of fracture or fusion? Geology, 6, 507-511.
Wenk, H. R., Johnson, L. R., & Ratschbacher, L. (2000). Pseudotachylites in the Eastern Peninsular Ranges of California. Tectonophysics, 321(2), 253-277.
Wessel, P., & Smith, W. H. F. (1991). Free software helps map and display data. Eos, Transactions American Geophysical Union, 72(41), 441-446.
Wessel, P., & Smith, W. H. F. (1995). New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33), 329-329.
Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47), 579-579.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45), 409-410.
Williams, W., & Dunlop, D. J. (1989). Three-dimensional micromagnetic modelling of ferromagnetic domain structure. Nature, 337(6208), 634-637.
Woltz, S., Hiergeist, R., Görnert, P., & Rüssel, C. (2006). Magnetite nanoparticles prepared by the glass crystallization method and their physical properties. Journal of Magnetism and Magnetic Materials, 298(1), 7-13.
Zhou, W., Van der Voo, R., & Peacor, D. R. (1997). Single-domain and superparamagnetic titanomagnetite with variable Ti content in young ocean-floor basalts: No evidence for rapid alteration. Earth and Planetary Science Letters, 150(3-4), 353-362.
Zhou, W., Van Der Voo, R., & Peacor, D. R. (1999). Preservation of pristine titanomagnetite in older ocean-floor basalts and its significance for paleointensity studies. Geology, 27(11), 1043-1046.
Zhou, W., Van Der Voo, R., Peacor, D. R., Wang, D., & Zhang, Y. (2001). Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: A gradual process with implications for marine magnetic anomaly amplitudes. Journal of Geophysical Research: Solid Earth, 106(B4), 6409-6421.
Zhou, W., Van der Voo, R., Peacor, D. R., & Zhang, Y. (2000). Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth and Planetary Science Letters, 179(1), 9-20.
Zhu, S., Liu, Y., Rafailovich, M., & Sokolov, J. (1999). Confinement-induced miscibility in polymer blends. Nature, 400(6739), 49-51.