| 研究生: |
曾仁志 Tseng, Ren-Jhih |
|---|---|
| 論文名稱: |
無感測器驅動系統於薄型馬達之設計與實現 Design and Implementation of a Sensorless Drive System for Slim Motors |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 薄型馬達 、無感測器驅動 |
| 外文關鍵詞: | slim motors, sensorless drive |
| 相關次數: | 點閱:73 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了因應產品輕薄化之訴求,本研究以薄型永磁無刷馬達為研究主題,在系統空間及成本的考量下,發展適用於薄型馬達之無感測器驅動技術。因所探討的薄型馬達受限於輕薄尺寸,具有微感量及低反電動勢常數之特徵,若採取一般的無感測器驅動技術並不易實現。鑒於此,本文在低成本及高實現性的前提下,提出二種改良型反電動勢估測法,依此發展適用於薄型馬達之無感測器驅動架構。於理論分析與實驗比較下,所提出之改良型端電壓比較法,透過特殊的端電壓比較邏輯來產生虛擬的換相參考訊號,此估測技術無需中性點電壓、濾波器及相移機制,可有效提升系統頻寬及改善低速估測性能。
本文針對開迴路啟動至閉迴路換相之切換提出改良技術,使切換瞬間不受轉矩角效應之影響,提供開迴啟動較大的應用彈性。再者,在無需耦合器及位置感測器的條件下,整合無感測器驅動及參數估測之技術,間接估測馬達反電動勢常數及特性曲線,以提供馬達設計者驗證設計規格之參考平台。由理論分析及實驗結果證明,本研究結果可使馬達的驅動控制及參數量測不因尺寸輕薄化而受限,可有效的應用於高速、輕薄化之場合,如散熱風扇及儲存裝置等應用。
Due to the strong demand for miniature designs on the market, slim motors make the best candidate for compact applications. This thesis employs a slim-type permanent magnet brushless motor to minimize the overall system volume. The design and implementation of the sensorless control schemes are developed, in regard to economical and practical considerations, such as size, cost and reliability.
As slim motors feature micro-inductance and low-back EMF constant, it is not feasible to adopt traditional back EMF detection methods in the sensorless drive. Thus, two improved schemes are proposed for slim motors. The extended analysis and comparisons are further made for both of them. In the second approach, the commutation signals are extracted directly from the specific line-to-line voltages with comparators, instead of utilizing the motor neutral voltage, analog filters and phase shifters. In comparison with the conventional methods, this approach effectively improves the system bandwidth and low speed performance.
Moreover, the torque angle effect free technique at the start-up to the commutation instant provides the flexibility for various applications. With the sensorless drive, it is estimated that the back EMF constant provides the verification for the motor designers without any coupling. Because of the inherent properties, the proposed control algorithm is particularly suitable for high speed or compact applications, such as cooling fans and storage devices. Theoretical analysis and experiments are conducted to evaluate the effectiveness of the proposed technique.
[1]C. D. French and P. P. Acarnley, “Control of Permanent Magnet Motor Drives using a New Position Estimation Technique,” IEEE Trans. Ind. Applicat., vol. 32, no. 5, pp. 1089-1097, Sep./Oct. 1996.
[2]C. H. Chen, W. C. Tai, and M. Y. Cheng, “Analysis of a Cost Effective Zero Emission Scooter Drive,” in Proc. of the 25th EPE Conf., Tainan, Taiwan, pp. 1329-1334, Nov. 2004.
[3]C. H. Chen and M. Y. Cheng, “A New Cost Effective Sensorless Commutation Method for Brushless DC Motors Without Phase Shift Circuit and Neutral Voltage,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 644-653, Mar. 2007.
[4]D. Y. Ohm, ”Dynamic Model of PM Synchronous Motors,” Drivetech, Inc., Blacksburg, Virginia, www.drivetechinc.com.
[5]“dsPIC30F Family Reference Manual,” DS70046B, Microchip Technology Inc., 2003.
[6]G. J. Su and J.W. McKeever, “Low-Cost Sensorless Control of Brushless DC Motors with Improved Speed Range,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 296-302, Mar. 2004.
[7]J. C. Moreira, “Indirect Sensing for Rotor Fux Position of Permanent Magnet AC Motors Operating in a Wide Speed Range,” IEEE Trans. Ind. Applicat., vol. 32, no. 6, pp. 1394-1401, Nov./Dec. 1996.
[8]J. Shao, D. Nolan, and T. Hopkins, “Improved Direct Back EMF Detection for Sensorless Brushless DC (BLDC) Motor Drives,” in Proc. IEEE APE Conf., vol. 1, pp. 300-305, Feb. 2003.
[9]J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, and M. Sawamura, “Sensorless Drive of Surface-Mounted Permanent-Magnet Motor by High-Frequency Signal Injection Based on Magnetic Saliency,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1031-1038, July/Aug. 2003.
[10]J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A Novel Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Fuel Pumps,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1734-1740, Nov./Dec. 2003.
[11]J. X. Shen, Z. Q. Zhu, and D. Howe, “Sensorless Flux-Weakening Control of Permanent Magnet Brushless Machines using Third-Harmonic Back-EMF,” IEEE Trans. Ind. Applicat., vol. 40, no. 6, pp. 1629-1636, Nov./Dec. 2004.
[12]J. Shao, “An Improved Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Applications,” IEEE Trans. Ind. Applicat., vol. 42, no. 5, pp. 1216-1221, Sept./Oct. 2006.
[13]K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, “Microcomputer Control for Sensorless Brushless Motor,” IEEE Trans. Ind. Applicat., vol. 21, no. 4, pp. 595-601, May/June 1985.
[14]K. Y. Cheng and Y. Y. Tzou, “Design of a Sensorless Commutation IC for BLDC Motors,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1365–1375, Nov. 2003.
[15]L. A. Jones and J. H. Lang, “A State Observer for the Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Electron., vol.36, no.3, pp. 374-382, Aug. 1989.
[16]ML4425: Sensorless BLDC Motor Controller, Datasheet, Fairchild Semiconductor Inc., July 2001.
[17]M. E. Haque, L. Zhong, and M. F. Rahman, “A Sensorless Initial Rotor Position Estimation Scheme for a Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive,” IEEE Trans. Power Electron., vol. 8, no. 6, pp. 1376-1383, Nov. 2003.
[18]N. Ertugrul and P. P. Acarnley, “New Algorithm for Sensorless Operation of Permanent Magnet Motors,” IEEE Trans. Ind. Applicat., vol. 30, no. 1, pp. 126-133, Jan./Feb. 1994.
[19]N. Matsui, “Sensorless PM Brushless DC Motor Drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, Apr. 1996.
[20]N. H. Bae, S. K. Sul, and J. H. Kwon, “Implementation of Sensorless Vector Control for Super-High-Speed PMSM of Turbo-Compressor,” IEEE Trans. Ind. Applicat., vol.39, no.3, pp. 811-818, May/Jun. 2003.
[21]P. P. Acarnley and J. F. Watson, “Review of Position-Sensorless Operation of Brushless Permanent-Magnet Machines,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 352-362, Apr. 2006.
[22]R. Krishnan and R. Ghosh, “Starting Algorithm and Performance of a PM DC Brushless Motor Drive System with no Position Sensor,” in Proc. IEEE PESC Conf., vol. 2, pp. 815-821, June 1989.
[23]R. Dhaouadi, N. Mohan, and I. Norum, “Design and Implementation of an Extended Kalman Filter for the State Estimation of a Permanent Magnet Synchronous Motor,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 491-497, July 1991.
[24]R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of Algorithms for Velocity Estimation from Discrete Position Versus Time Data,” IEEE Trans. Ind. Electron., vol.39, no.1, pp.11-19, Feb. 1992.
[25]S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of Operating Limits for Permanent Magnet Motor by Current Vector Control Considering Inverter Capacity,” IEEE Trans. Ind. Applicat., vol. 26, no. 5, pp. 866-871, Sep./Oct. 1990.
[26]S. Morimoto, M. Sanada, and Y. Takeda, “Wide-Speed Operation of Interior Permanent Magnet Synchronous Motors with High-Performance Current Regulator,” IEEE Trans. Ind. Applicat., vol.30, no.4, pp. 920-926, July 1994.
[27]L6385: High-Voltage High and Low Side Driver, Datasheet, ST Microelectronics, U.S.A., 1999.
[28]S. Nakashima, Y. Inagaki, and I. Miki, “Sensorless Initial Rotor Position Estimation of Surface Permanent-Magnet Synchronous Motor,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1598-1603, Nov./Dec. 2000.
[29]S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman Filter Tuning in Sensorless PMSM Drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 6, pp. 1741-1747, Nov./Dec. 2003.
[30]S. J. Wang, C.H. Fang and L. S. Kuan, “A Flux Estimation Method for a Permanent-Magnet Synchronous Motor,” J. Mag. Mag. Mat., vol. 282, pp. 355-359, Nov. 2004.
[31]TDA5145: Brushless DC Motor Drive Circuit, Datasheet, Philips Semiconductor Inc., June 1994.
[32]TB6537P: 3-Phase Full-Wave Sensorless Controller for Brushless DC Motors, Datasheet, Toshiba Semiconductor Inc., June 2003.
[33]T. Kenjo and S. Nagamori, “Brushless Motors Advanced and Modern Applications,” SOGO Electron. Press, 2003.
[34]W. J. Lee and S. K. Sul, “A New Starting Method of BLDC Motors without Position Sensor,” IEEE Trans. Ind. Applicat., vol. 42, no. 6, pp. 1532-1538, Nov./Dec. 2006.
[35]Y. S. Lai, F. S. Shyu, and S. S. Tseng, “New Initial Position Detection Technique for Three-Phase Brushless DC Motor without Position and Current Sensors,” IEEE Trans. Ind. Applicat., vol. 39, no. 2, pp. 485-491, Mar./Apr. 2003.
[36]Y. S. Lai, F. S. Shyu, and Y. H. Chang, “Novel Loss Reduction Pulsewidth Modulation Technique for Brushless DC Motor Frives Fed by MOSFET Inverter,” IEEE Trans. Power Electron., vol. 19, pp. 1646-1656, Nov. 2004.
[37]Y. S. Lai, F. S. Shyu, and Y. K. Lin, “Novel PWM Technique without Causing Reversal DC-link Current for Brushless DC Motor Drives with Bootstrap Driver,” in Proc. IEEE Ind. Applicat. Conf., vol. 3, no. 6, pp. 2182-2188, Oct. 2005.
[38]Y. S. Lai and Y. K. Lin, “Assessment of Pulse-Width Modulation Techniques for Brushless DC Motor Drives,” in Proc. IEEE IAS Conf., vol. 4, pp. 1629-1636, Oct. 2006.
[39]林穎燦,無刷直流馬達無感測換相控制IC之規劃與設計,國立交通大學電機與控制工程系碩士論文,2001。
[40]陳秋麟,電機機械基本原理, 東華書局股份有限公司,1995。
[41]許良伊,薄型永磁無刷馬達之設計與實現,國立成功大學機械工程系博士論文,2006。
[42]黃建欽,新型二相直流無刷馬達之分析與實現,國立成功大學機械工程學系博士論文,2003。
[43]趙貴祥,直流伺服電動機,文笙書局,1982。