簡易檢索 / 詳目顯示

研究生: 莊光庭
Zhuang, Guang-Ting
論文名稱: 臨界轉換區內有限高圓柱之高寬比對分離泡非定常特性之影響
Effect of aspect ratio on the unsteadiness of separation bubble around finite circular cylinder at transition critical regime
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: 有限高圓柱非定常現象流場可視化風洞實驗
外文關鍵詞: finite cylinder, intermittency factor, wind tunnel experiment, flow visualization
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣動力學的研究中流體流動經過圓柱體是相當經典的題目之一,在高雷諾數下時,形成阻力驟降(drag crisis)現象此為臨界區間的特性,而阻力驟降的原因為分離泡形成於圓柱表面,而圓柱流場在臨界區域中極為複雜,尤其對於不同高寬比的有限高圓柱,因其受到自由端與基部流場影響使得整體的三維特性極強。
    故本研究為探討高寬比(Aspect ratio, AR)為4、3、2時對非定常分離泡特性於雷諾數2×10^5至4×10^5間之影響,首先對高寬比(Aspect ratio, AR)3、4時之有限高圓柱進行油膜實驗,觀察臨界轉換區圓柱表面流場特性。
    並對高寬比2至4之圓柱進行壓力量測實驗,透過使用間歇性因子分析其分離泡於各高寬比生成之間歇性,其中包含正負角度之非對稱分離泡及各高層間之同步性分離泡分析,最後以相關性分析其各高層間受分離泡生成之相關性,最後以歸納其高寬比2至4不同時高寬比影響其分離泡狀態的變化。

    The investigation concentrates on the formation of unsteadiness of separation bubble around finite circular cylinder which is affected by different aspect ratios (AR) at transition critical regime. The experimental finite cylindrical models include a pressure experimental model (AR=2,3,4) and an oil-film experimental model (AR=3,4).
    Through oil-film visualization observed that the flow characteristics of finite circular cylinder can be divided into three parts by different height positions. Namely, the free end at the upper level of the model, the middle level, and the lower level. In the critical regime, the alternating appearance of two separation line and separation bubble around the finite circular cylinder can be observed, and the frequency of alternation increases as the increase of Reynolds number, this means that the separation bubble is intermittent, and is clearly observed that the unsteadiness of separation bubble is affected by the aspect ratio as the aspect ratio decreases and the phenomenon occurs at lower Reynolds number.
    In the study, the surface pressure of the finite circular cylinder was measured that was analyzed statistically. The unsteadiness of separation bubble was quantified by intermittency factor, this quantitative approach is used to demonstrate that the properties of unsteadiness of separation bubble: asymmetric, non-synchronous, and intermittent in flow characteristics due to the aspect ratio.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 圖目錄 XII 表目錄 XX 符號索引 XXI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 臨界雷諾數流場特性 3 1.2.2 有限高圓柱流場 9 第二章 實驗設備與模型 16 2.1 實驗風洞 16 2.2 皮托管 17 2.3 電阻溫度檢測器(RTD) 17 2.4 手提式壓力校正器 18 2.5 壓力轉換器 19 2.6 資料擷取系統 19 2.7 油膜實驗材料 20 2.8 實驗圓柱模型 21 2.8.1 有限高圓柱模型 21 2.8.2 圓柱模型壓力孔設置 21 2.8.3 實驗模型座標定義 21 第三章 實驗方法與訊號分析 24 3.1 油膜可視化實驗 24 3.2 圓柱表面壓力量測實驗 24 3.3 實驗參數分析 25 3.3.1 雷諾數(Reynolds number) 25 3.3.2 壓力係數 25 3.4 訊號分析 26 3.4.1 偏度 26 3.4.2 間歇性因子 27 3.4.3 相關性分析 33 第四章 結果與討論 35 4.1 高寬比3與4之油膜實驗結果 35 4.1.1 高寬比3之有限高圓柱 35 4.1.2 高寬比4之有限高圓柱 46 4.2 高寬比2、3、4圓柱之壓力實驗結果 50 4.2.1 高寬比4圓柱之瞬時壓力訊號統計 50 4.2.2 高寬比3圓柱之瞬時壓力訊號統計 67 4.2.3 高寬比2圓柱之瞬時壓力訊號統計 82 4.2.4 高寬比4、3、2圓柱之間歇性狀態 91 4.2.5 高寬比4、3、2圓柱之壓力相關性分析 115 第五章 結論與未來建議 118 5.1 結論 118 5.2 未來建議 120 參考文獻 121

    [1] 吳霽麒, "高寬比對有限高圓柱流場於臨界區特性之影響," 國立成功大學航空太空工程學系, 2020.
    [2] 蔡明哲, "臨界轉換區非定常分離泡於有限高圓柱之特性研究," 國立成功大學航空太空工程學系, 2021.
    [3] T. Von Karman, "Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt," Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, vol. 1911, pp. 509-517, 1911.
    [4] G. Taylor, "Pressure distribution round a cylinder," Advisory Committee of Aeronautics, vol. 191, 1916.
    [5] C. Wieselsberger, "Further information on the laws of fluid resistance," 1922.
    [6] A. Roshko, "Experiments on the flow past a circular cylinder at very high Reynolds number," Journal of fluid mechanics, vol. 10, no. 3, pp. 345-356, 1961.
    [7] E. Achenbach, "Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re= 5× 106," Journal of Fluid Mechanics, vol. 34, no. 4, pp. 625-639, 1968.
    [8] A. Roshko, "On the persistence of transition in the near-wake," Problems of Hydrodynamics and Continuum Mechanics., pp. 606-616, 1969.
    [9] M. Zdravkovich, "Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders," Journal of wind engineering and industrial aerodynamics, vol. 33, no. 1-2, pp. 53-62, 1990.
    [10] R. Basu, "Aerodynamic forces on structures of circular cross-section. Part 1. Model-scale data obtained under two-dimensional conditions in low-turbulence streams," Journal of Wind Engineering and Industrial Aerodynamics, vol. 21, no. 3, pp. 273-294, 1985.
    [11] P. W. Bearman, "On vortex shedding from a circular cylinder in the critical Reynolds number regime," Journal of Fluid Mechanics, vol. 37, no. 3, pp. 577-585, 1969.
    [12] L. Ericsson, "Karman vortex shedding and the effect of body motion," AIAA Journal, vol. 18, no. 8, pp. 935-944, 1980.
    [13] C. Farell and J. Blessmann, "On critical flow around smooth circular cylinders," Journal of Fluid Mechanics, vol. 136, pp. 375-391, 1983.
    [14] E. Achenbach and E. Heinecke, "On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6× 103 to 5× 106," Journal of fluid mechanics, vol. 109, pp. 239-251, 1981.
    [15] N. Kamiya, S. Suzuki, and T. Nishi, "On the aerodynamic force acting on a circular cylinder in the critical range of the Reynolds number," in 12th Fluid and Plasma Dynamics Conference, 1979, p. 1475.
    [16] D. Almosnino and K. W. McAlister, "Water-Tunnel Study of Transition Flow Around Circular Cylinders," NATIONAL AERONUATICS AND SPACE ADMINISTRATION MOFFETT FIELD CA AMES RESEARCH …, 1984.
    [17] G. Schewe, "Reynolds-number effects in flow around more-or-less bluff bodies," Journal of Wind Engineering and Industrial Aerodynamics, vol. 89, no. 14-15, pp. 1267-1289, 2001.
    [18] G. Schewe, "On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers," Journal of fluid mechanics, vol. 133, pp. 265-285, 1983.
    [19] J. S. Humphreys, "On a circular cylinder in a steady wind at transition Reynolds numbers," Journal of Fluid Mechanics, vol. 9, no. 4, pp. 603-612, 1960.
    [20] J. Miau, H. Tsai, Y. Lin, J. Tu, C. Fang, and M. Chen, "Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime," Experiments in fluids, vol. 51, no. 4, pp. 949-967, 2011.
    [21] Y.-J. Lin, J.-J. Miau, J.-K. Tu, and H.-W. Tsai, "Nonstationary, three-dimensional aspects of flow around circular cylinder at critical Reynolds numbers," AIAA journal, vol. 49, no. 9, pp. 1857-1870, 2011.
    [22] H. Chowdhury, F. Alam, and A. Subic, "Aerodynamic performance evaluation of sports textile," Procedia Engineering, vol. 2, no. 2, pp. 2517-2522, 2010.
    [23] T. A. Fox and G. West, "Fluid-induced loading of cantilevered circular cylinders in a low-turbulence uniform flow. Part 1: mean loading with aspect ratios in the range 4 to 30," Journal of Fluids and Structures, vol. 7, no. 1, pp. 1-14, 1993.
    [24] D. Sumner, "Flow above the free end of a surface-mounted finite-height circular cylinder: a review," Journal of Fluids and Structures, vol. 43, pp. 41-63, 2013.
    [25] S. Okamoto and Y. Sunabashiri, "Vortex shedding from a circular cylinder of finite length placed on a ground plane," 1992.
    [26] T. Kawamura, M. Hiwada, T. Hibino, I. Mabuchi, and M. Kumada, "Flow around a finite circular cylinder on a flat plate: Cylinder height greater than turbulent boundary layer thickness," Bulletin of JSME, vol. 27, no. 232, pp. 2142-2151, 1984.
    [27] D. Sumner, J. Heseltine, and O. Dansereau, "Wake structure of a finite circular cylinder of small aspect ratio," Experiments in Fluids, vol. 37, no. 5, pp. 720-730, 2004.
    [28] M. Adaramola, O. Akinlade, D. Sumner, D. Bergstrom, and A. Schenstead, "Turbulent wake of a finite circular cylinder of small aspect ratio," Journal of Fluids and Structures, vol. 22, no. 6-7, pp. 919-928, 2006.
    [29] T. Okamoto and M. Yagita, "The experimental investigation on the flow past a circular cylinder of finite length placed normal to the plane surface in a uniform stream," Bulletin of JSME, vol. 16, no. 95, pp. 805-814, 1973.
    [30] C.-W. Park and S.-J. Lee, "Free end effects on the near wake flow structure behind a finite circular cylinder," Journal of Wind Engineering and Industrial Aerodynamics, vol. 88, no. 2-3, pp. 231-246, 2000.
    [31] H. Wang, Y. Zhou, and J. Mi, "Effects of aspect ratio on the drag of a wall-mounted finite-length cylinder in subcritical and critical regimes," Experiments in fluids, vol. 53, no. 2, pp. 423-436, 2012.
    [32] S. Roh and S. Park, "Vortical flow over the free end surface of a finite circular cylinder mounted on a flat plate," Experiments in fluids, vol. 34, no. 1, pp. 63-67, 2003.
    [33] C. Baker, "The laminar horseshoe vortex," Journal of fluid mechanics, vol. 95, no. 2, pp. 347-367, 1979.
    [34] W. A. Eckerle and L. Langston, "Horseshoe vortex formation around a cylinder," 1987.
    [35] G. West and C. Apelt, "The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder with Reynolds numbers between 104 and 105," Journal of Fluid mechanics, vol. 114, pp. 361-377, 1982.
    [36] M. M. Zdravkovich, Flow around circular cylinders: Volume 2: Applications. Oxford university press, 1997.
    [37] 王政傑, "開放式低速風洞校驗及交叉軸式風力發電機空氣動力性能研究," 國立成功大學航空太空工程學系, 2017.
    [38] F. Lu, "Surface oil flow visualization," The European Physical Journal Special Topics, vol. 182, no. 1, pp. 51-63, 2010.
    [39] A. Norman and B. McKeon, "Unsteady force measurements in sphere flow from subcritical to supercritical Reynolds numbers," Experiments in fluids, vol. 51, no. 5, pp. 1439-1453, 2011.
    [40] G. Chopra and S. Mittal, "The intermittent nature of the laminar separation bubble on a cylinder in uniform flow," Computers & Fluids, vol. 142, pp. 118-127, 2017.
    [41] R. Deshpande, V. Kanti, A. Desai, and S. Mittal, "Intermittency of laminar separation bubble on a sphere during drag crisis," Journal of Fluid Mechanics, vol. 812, pp. 815-840, 2017.
    [42] U. Dallmann and G. Schewe, "On topological changes of separating flow structures at transition Reynolds numbers," in 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference, 1987, p. 1266.
    [43] B. Gölling, U. C. Dallmann, and H.-P. Kreplin, "Experimental Investigations on Active and Dynamic Instability Control of Separated Turbulent Wing/Cylinder-Flows," in Aerodynamic Drag Reduction Technologies: Springer, 2001, pp. 369-376.
    [44] H. Higuchi, H.-J. Kim, and C. Farell, "On flow separation and reattachment around a circular cylinder at critical Reynolds numbers," Journal of Fluid Mechanics, vol. 200, pp. 149-171, 1989.
    [45] J. Miau, C. Fang, M. Chen, C. Wang, and Y. Lai, "Discrete transition of flow over a circular cylinder at precritical Reynolds numbers," AIAA journal, vol. 52, no. 11, pp. 2576-2586, 2014.
    [46] 蔡佳樺, "有限高圓柱表面流場於臨界雷諾數之特性研究," 國立成功大學航空太空工程學系, 2018.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE