簡易檢索 / 詳目顯示

研究生: 鄭慶誠
Cheng, Ching-Cheng
論文名稱: 氮化鋱金屬閘極與氧化鉿high-k絕緣材料場效電晶體之研製
The Fabrication and Characterization of Terbium Nitride Metal Gate with Hafnium Oxide High-k Material MOS Field-effect Transistors
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 53
中文關鍵詞: 氮化鋱金屬閘極氧化鉿
外文關鍵詞: Hafnium Oxide, Metal Gate, Terbium Nitride
相關次數: 點閱:59下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自1960年電晶體發展以來,電晶體藉尺寸的微縮得以增加操作速度與降低功率消耗,電路之元件積成密度與特性獲得快速地提升。但不斷地微縮下,傳統的二氧化矽已達到其物理極限,穿遂效應所造成的閘極漏電流劇增,使得功率消耗過大,甚而使元件失效造成電路邏輯錯誤。另一方面,傳統複晶矽閘極之空乏電容效應亦隨著通道長度縮小愈形嚴重。因此找尋高介電係數材料與金屬閘極材料顯得勢在必行。
    本論文旨在以氮化鋱(TbN)作為金屬閘極材料,搭配的閘極介電層為氧化鉿(HfO2),進行電容及場效電晶體製作與量測分析。於物性分析係利用X光繞射分析(XRD)、化學分析電子儀(ESCA)、歐傑電子分析儀(AES)分析氮化鋱薄膜。實驗發現在射頻濺鍍系統中,以不同氮氣流量比例的射頻電漿濺鍍,無法改變薄膜中氮與鋱原子的成分比。實驗所得氮與鋱的原子比例為10%和90%,而射頻功率160 W所獲得的金屬氮化物鍵結較強,以(111)的相位為主,具有較佳的熱穩定性。氮化鋱薄膜在電阻率的比較上,略優於複晶矽閘極。
    針對MOS的特性,我們利用C-V和漏電流的量測探討氮化鋱的熱穩定性與金屬功函數的表現。電晶體之特性量測包括I DS-VDS和IDS-VGS特性,閘極偏壓為1.5 V時,汲源極飽和電流約為2 mA,電晶體之Ion/Ioff約達五個數量級,另由IDS-VGS萃取出臨界電壓約為-0.1 V;次臨界擺幅為192.04 mV/decade。由實驗結果顯示,以氮化鋱為金屬閘極搭配氧化鉿閘極介電層的結構,適用於N型金氧半場效電晶體,對於CMOS電路元件的應用具潛力◦

    The continuous CMOS scaling has resulted in a continuous improving of the speed, power consumption, packing density and performance of integrated circuits. However, shrinkage in gate oxide thickness in tackling short channel effects has now been limited by gate leakage currents. In addition, the poly-Si gate which suffers from depletion effect has become intolerable in deep submicron technology. High-κ materials and metal gate are then urgently required in future CMOS technology.
    In this thesis, terbium nitride (TbN) and hafnium oxide (HfO2) were proposed to serve as gate metal and gate insulator for future CMOS technology, respectively. Both these two films were sputtering deposited and thermally annealed. The physical properties and compositions of TbN film were analyzed using XRD, ESCA, and AES. It is found that the composition of TbN films was very difficult modified by the combination of the sputtering gas, which is solely determined by the target material. Experimental results shows that TbN films with relatively stronger binding energy could be obtained from a RF sputtering with a power of 160 W and the main phase of the film is (111).
    MOS capacitances with TbN/HfO2/p-Si structure and n-FETs based on the same MOS structure were fabricated and characterized. C-V and leakage current for the MOS capacitances as well as IDS-VDS and IDS-VGS characteristics of MOSFETs were measured and analyzed. According to C-V curves and TEM images, the HfO2 high-k films prepared in this work were with a k-value of 25 and a minimum EOT around 1.7 nm has been realized. Typical values of Ion/Ioff ratio, threshold voltage, and subthreshold swing (SS) obtained form the fabricated MOSFETs with TbN(40 nm)/HfO2(10.6 nm)/p-Si (3 1015 cm-3) MOS structure were 105, -0.1 V, and 192.04 mV/decade, respectively.
    Though further investigations are still required, our preliminary experimental results suggest that the sputtering deposited TbN and HfO2 films might work well for future MOSFETs.

    中文摘要 英文摘要 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 微縮化CMOS之發展...................................1 1.2 金屬閘極之發展與挑戰...............................3 1.3 選用氮化鋱與氧化鉿的原因...........................6 1.4 研究動機...........................................8 第二章 金屬閘極和場效電晶體之基礎理論 2.1 金屬-氧化層-半導體場效電晶體短通道效應與對策.......9 2.2 金屬閘極功函數的萃取方法...........................15 第三章 金屬閘極和場效電晶體製作 3.1 氮化鋱電容製作流程.................................17 3.2 金氧半場效電晶體製作流程...........................26 第四章 氮化鋱薄膜分析 4.1 歐傑電子能譜縱深分析...............................31 4.2 低掠角入射X光繞射結構分析..........................34 4.3 X光光電子能譜化學鍵結分析..........................36 4.4 氮化鋱薄膜片電阻...................................37 4.5 氮化鋱薄膜截面.....................................38 第五章 MOS電容與場效電晶體電性之分析討論 5.1 MOS電容特性........................................40 5.2 N通道金氧半場效電晶體的電性量測....................45 第六章 結論與未來研究方向 6.1 結論...............................................49 6.2 未來研究方向.......................................50 參考文獻...............................................51

    [1] Clement H. J. Wann, David J. Frank, Hon-Sum Philip Wong, Jeffrey J. Welser, and Paul M. Solomon, “Nanoscale CMOS,” Proceedings of the IEEE, vol. 87, no. 4, April 1999.
    [2] Kaizad Mistry, Mark T. Bohr, Robert S. Chau, Scott E. Thompson, Sunit Tyagi, and Tahir Ghani, “In Search of “Forever,” Continued Transistor Scaling One New Material at a Time,” IEEE transactions on semiconductor manufacturing, vol. 18, no. 1, February 2005.
    [3] Ching-Te Chung, et al, “Scaling Planar Silicon Devices,” IEEE circuits & devices magazine, vol. 04, pp. 7-19, January 2004.
    [4] International Technology Roadmap for Semiconductor (ITRS), 2005 update.
    [5] Frederic Boeuf, H.-S Philip Wong, James A. Hutchby, Thomas Skotnicki, and Tsu-Jae King, “The end of CMOS Scaling,” IEEE circuits & devices magazine, vol. 5, pp. 16-26, January 2005.
    [6] H.-S. P. Wong, “Beyond the Conventional Transistor,” IBM J. RES. & DEV., vol. 46, no. 2/3, pp. 133-168, March 2002.
    [7] Donald A. Neamen, “Semiconductor Physics & Devices, 3/E,” The McGraw-Hill Companies, Inc. , Taiwan, 2003.
    [8] Cheniming Hu, Tsu-Jae King, and Yee-Chia Yeo, “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology,” Journal of Applied Physics, vol. 92, num. 12, December 2002.
    [9] Chenming Hu, Pushkar Ranade, Tsu-Jae King, and Yee-Chia Yeo, “Effects of High-κ Gate Dielectric Materials on Metal and Silicon Gate Workfunctions,” IEEE electron device letters, vol. 23, no. 6, June 2002.
    [10] Jason Gurganos, Jack Lee, Rashmi Jha, R. Choi, Veena Misra, and Y. H. Kim, “A Capacitance-Based Methodology for Work Function Extraction of Metals on High-κ,” IEEE electron device letters, vol. 25, no. 6, June 2004.
    [11] 施敏,“半導體元件物理及製作技術(第二版)”,國立交通大學出版社,民國九十二年。
    [12] K. Nakajima, et al, “ Work Function Controlled Metal Gate Electrode on Ultrathin Gate Insulators,” Symposium on VLSI Technology Digest of Technical Papers, pp. 95-96, 1999.
    [13] C. Ren, et al, “Physical and electrical properties of lanthanide-incorporated tantalum nitride for n-channel metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 87, 2005.
    [14] A.D. Trigg, B. B. Faizhal, C. Ren, D.S.H. Chan, D.-L. Kwong, M.-F. Li, N. Balasubramanian, and Y.-C. Yeo, “Work function tuning of metal nitride electrodes for advanced CMOS devices,” Thin Solid Films, 2005.
    [15] X. P. Wang, et al, “Tuning Effective Metal Gate Work Funtion by a Novel Gate Dielectric HfLaO for nMOSFETs,” IEEE electron device letters, vol. 27, no. 1, January 2006.
    [16] Jae –Hoon Lee, Huicai Zhong,You-Seok Suh, Greg Heuss, Jason Gurganusm Bei Chen, and Veena Mistra, “Tunable Work Function Dual Metal Gate Technology for Bulk and Non-Bulk CMOS,” IEDM, vol. 14, no. 2, pp. 359-362, 2002.
    [17] W. P. Bai,S. H. Bae, H. C. Wen, S. Mathew, L. K. Bera, N. Balasubramanian, N. Yamada, M. F. Li,D.-L. Kwong, “Three-Layer Laminated Metal Electrodes With Tunable Work Functions for CMOS Applications,” IEEE electron device letters, vol. 26, no. 4, April 2006.
    [18] C. Ren, et al, “Thermally Robust TaTbxN Metal Gate Electrode for n-MOSFETs Applications,” IEEE electron device letters, vol. 26, no. 2, February 2005.
    [19] Dae-Gyu Park, et al, “Robust Ternary Metal Gate Electrodes for Dual Gate CMOS Devices,” IEDM, vol. 30, pp. 671-674, 2001.
    [20] Yee-Chia Yeo, et al, “Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology,” Journal of Applied physics, vol. 92, no. 12, pp. 7266-7271, December 2002.
    [21] S. H. Bae, et al, “Laminated Metal Gate Electrode With Tunable Work Function for Advantaged CMOS ,” Symposium on VLSI Technology Digest of Technical Papers, pp. 188-189, 2004.
    [22] C. Ren, et al, “Fermi-Level Pinning Induced Thermal Instability in the Effective Work Function of TaN in TaN/SiO2 Gate Stack ,” IEEE Electron Device Letters, vol. 25, no. 3, pp. 123-125, March 2004.
    [23] S. J. Lee, et al, “High Quality Ultra Thin CVD HfO2 Gate Stack with Poly-Si Gate Electrode,” IEDM, pp.31-34, 2000.

    下載圖示 校內:2011-06-29公開
    校外:2012-06-29公開
    QR CODE