| 研究生: |
楊哲源 Yang, Che-Yuan |
|---|---|
| 論文名稱: |
應用在28GHz射頻前端之氮化鎵電路元件設計與分析 Design and Analysis of GaN Circuit Components Used in 28 GHz RF Front-End |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氮化鎵 、Ka頻段 、功率放大器 、藍吉耦合器 、巴特勒矩陣 |
| 外文關鍵詞: | Gallium Nitride (GaN), Ka band, power amplifier, Lange coupler, Butler matrix |
| 相關次數: | 點閱:143 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用氮化鎵 .15 以及 .25製程製作射頻前端電路元件,其應用28GHz之頻段範圍,也就是在現今發展之第五世代通訊行動技術(5G)之中。
本論文共製作了功率放大器以及巴特勒矩陣。其中功率放大器以.15製程製作。在射頻前端系統中,功率放大器為其中不可或缺的一部分以增加功率信號。而在第二章及第三章中提出了應用在Ka頻段內並以二級架構達成17dB之增益的對稱型功率放大器。且在設計時追求最大之功率輸出,可達接近一瓦特之功率輸出。並針對模擬以及量測落差方面進行相關分析。
在巴特勒矩陣方面,此論文提出了一種全新架構,和傳統之巴特勒矩陣相比,將傳統之前級開關分為兩級開關,可以更進一步去簡化電路複雜度,並且在未來可以預測更進一步簡化晶片尺寸。此巴特勒矩陣也應用於Ka頻段之毫米波行動通訊。利用藍吉耦合器以及微帶線實現了相位變化的功能,且利用電晶體等效二極體的功能可以達到控制訊號流向的功能,使在輸出端得到想要的結果。在相位變換方面,大致可達到30度的相位變化。於第四章節最後也分析了模擬結果與量測結果間的落差。
未來在設計方面針對此論文之缺失加以改善,期許可以得到更佳之設計結果。
This study uses gallium nitride (GaN) 0.15 and 0.25 processes to fabricate RF front-end circuit components. These components are used in the 28 GHz frequency range, which is the fifth generation (5G) of communication and mobile technology recently developed.
A power amplifier and Butler matrix are produced. The power amplifier is made in the 0.15 process. In the RF front-end system, the power amplifier is an integral part to increase the power signal. The second and third chapters propose a symmetrical power amplifier that is applied in the Ka-band and achieves a gain of 17 dB with a two-stage structure. In the design of the pursuit of the maximum power output, up to close to one watt of power output, we carry out relevant analysis on simulation and measurement drop.
In terms of the Butler matrix, this paper proposes a new architecture. Compared with the traditional Butler matrix, the traditional pre-stage switches are divided into two-stage switches, which can further simplify the circuit complexity and can be predicted in the future. Simplified wafer size. This Butler matrix is also used in Ka-band millimeter-wave mobile communications. The function of phase change is realized using a Lanji coupler and a microstrip line. The function of controlling the signal flow can be achieved using the function of a transistor equivalent diode so that the desired result can be obtained at the output end. In terms of phase transformation, a phase change of approximately 30° can be achieved. At the end of the fourth chapter, the gap between the simulation and measurement results are analyzed.
In the future, the design will be improved to obtained better results.
[1] Chen-Kuo Chu, “Study of Power Amplifier MMICs for Transmitter System Applications”, National Cheng Kung University Institute of Microelectronics Engineering Master's and Doctoral Program, 2008.
[2] S. Kumar and K. B. Moore, “The evolution of global positioning system (GPS) technology,” Journal of science Education and Technology, vol. 11, no. 1, pp. 59-80, 2002.
[3] T. Rappaport et al., “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol. 1, May 2013, pp. 335–49.
[4] H. Zhao et al., “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and Around Buildings in New York City,” IEEE ICC ’13, June 2013, pp. 516–67.
[5] T. Kim et al., “Tens of Gbps Support with mmWave Beamforming Systems for Next Generation Communications,” IEEE GLOBECOM ’13, Dec. 2013, pp. 3790–95.
[6] F. Khan and Z. Pi, “ mmWave Mobile Broadband (MMB):Unleashing the 3–300GHz Spectrum, ” IEEE Sarnoff Symp. 34th, 2011.
[7] J. Murdock et al., “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus Environment,” Wireless Commun. Network. Conf., Apr. 2012, pp. 3085–90.
[8] People's Posts and Telecommunications, “ ITU-R officially confirms the name of 5G, and the pace of research in IMT-2020 is accelerated, ” 2015. [Online]. Available: http://tech.sina.com.cn/t/2015-11-02/doc-ifxkhcfn4291207.shtml.
[9] Yu Xuan-Sun, “ IMT-2020, ” 2022. [Online]. Available: https://baike.baidu.hk/item/IMT-2020/18773712#reference-[1]-0-wrap.
[10] Wei Zheng-Han, “5G will be commercially available in 2020, ” 2018. [Online].Available: http://tc.people.com.cn/BIG5/n1/2018/0118/c183008-29772510.html.
[11] 3GPP TR-38.900 v14.2.0 “ Study on channel model for frequency spectrum above 6 GHz,” June 2017.
[12] Xiang Yu-Chen, “ 28GHz Phased Array Module for 5G, ” 2019. [Online].Available: https://ictjournal.itri.org.tw/content/Messagess/contents.aspx?&MmmID=654304432061644411&CatID=654313611231473607&MSID=1035143735020131450
[13] “What do 5G concept stocks look at? Sub 6. Where is the millimeter wave difference? Understand the 3 major trends of the industry chain in one article, ” 2021. [Online]. Available: https://www.bnext.com.tw/article/60653/5g-stock-industry-cellphone-december.
[14] Jin Shao;Rongguo Zhou, “ Design of broadband GaN doherty power amplifiers,” 2014 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR)
[15] K. Aldubaikhy, W. Wu, N. Zhang, N. Cheng and X. Shen, “ mmWave IEEE 802.11ay for 5G Fixed Wireless Access, ” in IEEE Wireless Communications, vol. 27, no. 2, pp. 88-95, April 2020, doi: 10.1109/MWC.001.1900174.
[16] O. Ambacher, “ Growth and applications of group III-nitrides, ” Journal of Physics D Applied Physics, vol. 31, no. 20, pp. 2653-2710, Oct. 1998.
[17] ElectronicsTutorials, “ Amplifier class, ” 2014. [Online]. Available: https://www.electronics-tutorials.ws/amplifier/amplifier-classes.html.
[18] I.D.Robertson, S.Porret, “ RFIC and MMIC Design and Technology (Materials, Circuits and Devices) 2nd ed.” The Institution of Engineering and Technology, pp. 102-109, Jan.2001
[19] lausai, “ Intermodulation Distortion, ” 2019. [Online]. Available: http://lausai360.blogspot.com/2019/04/intermodulation-distortion.html.
[20] A. Jarndal, “ A simplified modelling approach for AlGaN/GaN HEMTs using pinched cold S-parameters, ” in 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013: IEEE, pp. 1-4.
[21] G. Collinson and M. Jones, “ A Novel Technique for Measuring Small Signal S-Parameters Of An Rf/Microwave, Transistor, Power Amplifying Stage for Use in Power Amplifier Stability Analysis”, 1993 IEEE MTT-S International Microwave Symposium Digest, pp. 1255-1258, June 1993, doi: 10.1109/MWSYM.1993.277101
[22] S. C. Cripps, “ RF Power Amplifier for Wireless Communications,” Aretech House, Second Edition, 2006.
[23] Bruno Pattan, “ The Versatile Butler Matrix,” November 14, 2004, Microwave Journal.
[24] H.J. Riblet, “ The Short-slot Hybrid Junction,” Proc. IRE, February 1952.
[25] J. Butler and R. Lowe, “ Beam-forming Matrix Simplifies Design of Electrically Scanned Antennas,” Electronic Design, April 1961.
[26] W.A. Sanders, “ The Butler Matrix Transponder,” COMSAT Technical Review, Fall 1974.
[27] J.P. Shelton and K.S. Kelleher, “ Multiple Beams from Linear Arrays,” IRE Transactions on Antennas and Propagation, March 1961.
[28] T. MacNamara, “ Simplified Design Procedure for Butler Matrices Incorporating 90° and 180° Hybrids,” IEE Proc. H, Microwave and Antenna and Propagation, 1987, pp. 50–54.
[29] J.R.F. Guy, “ Proposal for the Use of Reflected Signals Through a Single Butler Matrix to Produce Multiple Beams From a Circular Array Antenna,” Electronic Letters, 1985, pp. 209–211.
[30] R. Levy, “ A High Power X-band Butler Matrix,” Microwave Journal, Vol. 11, No. 4, April 1968.
[31] R.C. Hansen, Microwave Scanning Antennas: Volume III, Academic Press, New York, NY.
[32] J.D. Kraus, Antennas, McGraw-Hill, New York, NY, 1950.
[33] K. Kibaroglu et al., “ An ultra low-cost 32-element 28 GHz phased-arraytransceiver with 41 dBm EIRP and 1.0-1.6 Gbps 16-QAM link at 300meters,” in 2017 IEEE RFIC, June 2017, pp. 73–76.
[34] B. Sadhu et al., “ A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication,” in 2017 IEEE ISSCC, Feb 2017, pp. 128–129.
[35] B. Rupakula, A. Nafe, S. Zihir, T. W. Lin, and G. M. Rebeiz, “ A 64 GHz 2 Gbps transmit/receive phased-array communication link in SiGe with 300 meter coverage, ” in 2017 IEEE IMS, June 2017, pp. 1599–1601.
[36] Risto Valkonen, “ Compact 28-GHz phased array antenna for 5G access, ” in 2018 IEEE IMS, June 2018, pp. 1334–1337.
[37] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, “ A Quad-Core 28-32 GHz Transmit/Receive 5G Phased-Array IC with Flip-Chip Packaging in Si-Ge BiCMOS,” Microwave Symposium (IMS), 2017 IEEE MTT-S International,May 2017, pp. 1892-1894.
[38] M. Tsuji, T. Nishikawa, K. Wakino, and T. Kitazawa, “ Bi-directionally fed phased-array antenna downsized with variable impendence phase shifter for ISM band,” IEEE Trans. Microw. Theory Tech., vol. 54 ,no.7, pp.2962-2969, Jul. 2006.
[39] B.T. Henoch and P. Tamm, “ A 360 reflection type diode phase modulator,” IEEE Trans. Microw. Theory Tech., vol. MTT-19 no.1, pp. 103-105, Jan. 1971.
[40] R.V. Garver, “ 360 varactor linear phase modulator,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no.3, pp.137-147, Mar. 1969.
[41] L.R. Whicker, “ Forward-special issue on microwave control devices for array antenna systems,” IEEE Trans. Microw. Theory Tech., vol.MTT-22, no. 6, pp.589-590, Jun. 1974.
[42] M. Aust, H. Wang, R. Carandang, K. Tan, C. H. Chen, T. Trinh, R. Esfandiari, and H. C. Yen, “ GaAs monolithic component development for Q-band phased array application,” in IEEE MTT-S Int. Dig, Albuquerque, NM, Juan 1992, pp. 703-706
[43] V. E. Dunn, J. Yang, “ Switched transmission-line type Q-band 4 b MMIC phased shifter using InGaAs PIN diodes,” Electron. Lett., vol.46, no. 3, pp. 225-226, Feb. 2010.
[44] D. Kajfez, Z. Paunovic, and S. Pavlin, “ Simplified design of Lange coupler, ” IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 10, pp. 806-808, 1978.
[45] J. Lange, “ Interdigitated stripline quadrature hybrid (correspondence), ” IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1150-1151, 1969.
[46] K. Janisz, R. Smolarz, A. Rydosz, K. Wincza and S. Gruszczynski, “ Compensated 3-dB lange directional coupler in suspended microstrip technique, ” 2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 2017, pp. 288-291, doi: 10.1109/MAPE.2017.8250858.
[47] K. Rangra et al., “ Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: design and fabrication, ” Sensors and Actuators A: Physical, vol. 123, pp. 505-514, 2005.
[48] A. Tajik, A. S. Alavijeh, and M. Fakharzadeh, “ Asymmetrical 4×4 Butler Matrix and its Application for Single Layer 8×8 Butler Matrix, ” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5372-5379, 2019.
[49] M. Bona, L. Manholm, J. Starski, and B. Svensson, “ Low-loss compact Butler matrix for a microstrip antenna, ” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 9, pp. 2069-2075, 2002.
[50] M. Nedil, T. A. Denidni, and L. Talbi, “ Novel Butler matrix using CPW multilayer technology, ” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 499-507, 2006.
[51] J. S. Néron and G. Y. Delisle, “ Microstrip EHF Butler matrix design and realization, ” ETRI journal, vol. 27, no. 6, pp. 788-797, 2005.
[52] Chen-Lin KO, “ TSRI EDA Cloud ADS Software User Manual, ” Feb 2021.
校內:不公開