簡易檢索 / 詳目顯示

研究生: 楊哲源
Yang, Che-Yuan
論文名稱: 應用在28GHz射頻前端之氮化鎵電路元件設計與分析
Design and Analysis of GaN Circuit Components Used in 28 GHz RF Front-End
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 97
中文關鍵詞: 氮化鎵Ka頻段功率放大器藍吉耦合器巴特勒矩陣
外文關鍵詞: Gallium Nitride (GaN), Ka band, power amplifier, Lange coupler, Butler matrix
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用氮化鎵 .15 以及 .25製程製作射頻前端電路元件,其應用28GHz之頻段範圍,也就是在現今發展之第五世代通訊行動技術(5G)之中。
    本論文共製作了功率放大器以及巴特勒矩陣。其中功率放大器以.15製程製作。在射頻前端系統中,功率放大器為其中不可或缺的一部分以增加功率信號。而在第二章及第三章中提出了應用在Ka頻段內並以二級架構達成17dB之增益的對稱型功率放大器。且在設計時追求最大之功率輸出,可達接近一瓦特之功率輸出。並針對模擬以及量測落差方面進行相關分析。
    在巴特勒矩陣方面,此論文提出了一種全新架構,和傳統之巴特勒矩陣相比,將傳統之前級開關分為兩級開關,可以更進一步去簡化電路複雜度,並且在未來可以預測更進一步簡化晶片尺寸。此巴特勒矩陣也應用於Ka頻段之毫米波行動通訊。利用藍吉耦合器以及微帶線實現了相位變化的功能,且利用電晶體等效二極體的功能可以達到控制訊號流向的功能,使在輸出端得到想要的結果。在相位變換方面,大致可達到30度的相位變化。於第四章節最後也分析了模擬結果與量測結果間的落差。
    未來在設計方面針對此論文之缺失加以改善,期許可以得到更佳之設計結果。

    This study uses gallium nitride (GaN) 0.15 and 0.25 processes to fabricate RF front-end circuit components. These components are used in the 28 GHz frequency range, which is the fifth generation (5G) of communication and mobile technology recently developed.
    A power amplifier and Butler matrix are produced. The power amplifier is made in the 0.15 process. In the RF front-end system, the power amplifier is an integral part to increase the power signal. The second and third chapters propose a symmetrical power amplifier that is applied in the Ka-band and achieves a gain of 17 dB with a two-stage structure. In the design of the pursuit of the maximum power output, up to close to one watt of power output, we carry out relevant analysis on simulation and measurement drop.
    In terms of the Butler matrix, this paper proposes a new architecture. Compared with the traditional Butler matrix, the traditional pre-stage switches are divided into two-stage switches, which can further simplify the circuit complexity and can be predicted in the future. Simplified wafer size. This Butler matrix is also used in Ka-band millimeter-wave mobile communications. The function of phase change is realized using a Lanji coupler and a microstrip line. The function of controlling the signal flow can be achieved using the function of a transistor equivalent diode so that the desired result can be obtained at the output end. In terms of phase transformation, a phase change of approximately 30° can be achieved. At the end of the fourth chapter, the gap between the simulation and measurement results are analyzed.
    In the future, the design will be improved to obtained better results.

    中文摘要 I Abstract III 致謝 V CONTENTS IV List of Tables XII List of Figures XIIII Chapter 1 Introduction 1 1-1 Research Background and Motivation 1 1-2 Chapter Brief 11 Chapter 2 Principle of Power-amplifier design 15 2-1 GaN Power Amplifier 15 2-2 Class of Operation Amplifiers 17 2-2-1 Introductions 17 2-2-2 Class A 17 2-2-3 Class B 19 2-2-4 Class AB 21 2-2-5 Class C 22 2-3 Basic specification parameters 24 2-3-1 Noise Figure 24 2-3-2 Gain/Loss 25 2-3-3 Stability 27 2-3-4 Output Power 28 2-3-5 Power Added Efficiency (PAE) 28 2-3-6 Intermodulation Distortion 29 Chapter3 28 GHz Power-Amplifier Design and Measurement Results and Analysis 31 3-1 Overview 31 3-2 Specification 31 3-3 Device Model 33 3-3-1 Small Signal Model for 100 Tµm UGW 34 3-3-2 Large Signal Models for 100 Tµm UGW 38 3-3-3 LC Simulation 39 3-3-4 Microstrip Line Simulation 40 3-4 Layout 43 3-5 Measurement Results 48 3-6 Analysis 58 Chapter4 Butler Matrix 59 4-1 Introduction and applications of the Butler matrix 59 4-2 Key technology of mm-wave array-antenna module design-Beam-forming 61 4-3 Design of the Butler matrix 64 4-3-1 Phase shifter 64 4-3-2 Principle operation of phase shift. 67 4-4 Lange Coupler 69 4-5 RF toggle switch 70 4-6 Design of the Butler matrix 72 4-7 Analysis 88 4-7-1 Model of Lange Coupler 88 4-7-2 Equivalent diode 89 Chapter 5 Conclusions and Future Works 90 5-1 Conclusions 90 5-1 Future Works 92 References 93 List of Tables Chapter 1 Introduction Table.1-1 28 GHz Antenna-array module Link Operation. 9 Chapter 2 Principle of Power-Amplifier Design Table.2-1 Comparison table of material properties between Si and GaN. [16] 16 Table.2-2 Bias operation of different kinds of power amplifiers. 24 Chapter 3 28 GHz Power-Amplifier Design and Measurement Results and Analysis Table 3-1 Design procedure of Power Amplifier. 32 Table 3-2 Specification of Power Amplifier MMIC. 33 Table 3-3 Current of the measurement. 53 Chapter 4 Butler Matrix Table 4-1 Current of transistor in different supply voltages. 89 List of Figures Fig. 1-1 Frequency-band designations. 2 Fig. 1-2 Array-antenna system. 7 Fig. 1-3 ITRI 28 GHz phased array-antenna module. (a) Front view (b) Side view 8 Fig. 1-4 Schematic of RF front-end system. 10 Fig. 1-5 Thesis chapter structure. 14 Fig. 2-1 Operation mode of Class A power amplifier [17] 18 Fig. 2-2 Operation mode of Class B power amplifier [17] 20 Fig. 2-3 Operation mode of Class AB power amplifier [17] 22 Fig. 2-4 Operation mode of Class C power amplifier [17] 23 Fig. 2-5 A two-port amplifier. 26 Fig. 2-6 Second and third intermodulation distortion. 29 Fig. 2-7 Third-order intercept point. [19] 30 Fig. 3-1 Small-signal equivalent model of GaN on SiC HEMT 34 Fig. 3-2 Schematic of 100 Tµm gate width simulation 35 Fig. 3-3 Simulation results of transistors in smith chart. (a) S11 simulation results. 35 Fig. 3-3 Simulation results of transistors in smith chart. (b) S12 simulation results. (c) S21 simulation results. 36 Fig. 3-3 Simulation results of transistors in smith chart. (d) S22 simulation results. 37 Fig. 3-4 I-V curve simulation schematic of 100 Tµm gate width 38 Fig. 3-5 I-V curve of 100 Tµm gate width. 39 Fig. 3-6 LC simulation of power amplifier. 40 Fig. 3-7 Input matching network simulation schematic 41 Fig. 3-8 Output matching network simulation schematic 42 Fig. 3-9 Interstage matching network simulation schematic 42 Fig. 3-10 Layout of input matching network. 44 Fig. 3-11 Layout of output matching network. 45 Fig. 3-12 Layout of interstage matching network. 45 Fig. 3-13 PA schematic network. 46 Fig. 3-14 Layout of Power Amplifier. 47 Fig. 3-15 S-parameters simulation results of power amplifier. (a) RF_freq=27 GHz(b)RF_freq=28 GHz(c)RF_freq=29 GHz(d)RF_freq=30 GHz(e)RF_freq=31 GHz 49 Fig. 3-16 power and gain simulation results of power amplifier. (a) RF_freq=27 GHz, (b) RF_freq=28 GHz, (c) RF_freq=29 GHz, (d) RF_freq=30 GHz, and (e) RF_freq=31 GHz 50 Fig. 3-17 Chip on test fixture. 51 Fig. 3-18 Top view of the wafer and the location of the wire bonding. 52 Fig. 3-19 S21 of power amplifier in different Vg values. 54 Fig. 3-20 S11 of power amplifier. 55 Fig. 3-21 S22 of power amplifier. 56 Fig. 3-22 P3 and P5 dB of power amplifier. (a) Vg=-1.3 V (b) Vg=-1.4 V(c) Vg=-1.5 V(d) Vg=-1.6V 57 Fig. 4-1 A four-beam conventional Butler Matrix schematic. 59 Fig. 4-2 Schematic of antenna array. 62 Fig. 4-3 mm-wave beam-forming module. 63 Fig. 4-4 Phase shifter using microstrip line toggle switch. 65 Fig. 4-5 Phase shifter using resonant toggle switch. 66 Fig. 4-6 Schematic of single Lange coupler phase shifter. 67 Fig. 4-7 Schematic of toggle switch combines Lange coupler phase shifter. 68 Fig. 4-8 Model of Lange Coupler. 69 Fig. 4-9 Schematic of RF toggle switch.. 71 Fig. 4-10 Design model of the Butler matrix. 72 Fig. 4-11 Whole layout of the Butler matrix.. 74 Fig. 4-12 45o phase difference. 75 Fig. 4-13 Insertion loss and return loss simulation results of Lange Coupler in this design. 79 Fig. 4-14 Insertion loss and return loss of switch. 80 Fig. 4-15 Return loss of the Butler matrix. 80 Fig. 4-16 Insertion loss of the Butler matrix. 81 Fig. 4-17 Phase shift of the Butler matrix. 81 Fig. 4-18 Image of the Butler matrix chip 82 Fig. 4-19 Measurement results of the output port 1 of the Butler matrix. (a) First stage +1 V and second stage -1 V. (b) First stage +2 V and second stage -2 V. (c) First stage +3 V and second stage -3 V. (d) First stage +4 V and second stage -4 V. (e) First stage +5 V and second stage -5 V. 83 Fig. 4-20 Measurement results of the output port 2 of the Butler matrix(a) First stage +1 V and second stage -1 V. (b) First stage +2 V and second stage -2 V. (c) First stage +3 V and second stage -3 V. (d) First stage +4 V and second stage -4 V. (e) First stage +5 V and second stage -5 V. 84 Fig. 4-21 Measurement results of the output port 3 of the Butler matrix(a) First stage +1 V and second stage -1 V. (b) First stage +2 V and second stage -2 V. (c) First stage +3 V and second stage -3 V. (d) First stage +4 V and second stage -4 V. (e) First stage +5 V and second stage -5 V. 85 Fig. 4-22 Measurement results of the output port 4 of the Butler matrix(a) First stage +1 V and second stage -1 V. (b) First stage +2 V and second stage -2 V. (c) First stage +3 V and second stage -3 V. (d) First stage +4 V and second stage -4 V. (e) First stage +5 V and second stage -5 V. 86 Fig. 4-23 Phase difference of the Butler matrix. 87 Fig. 4-24 Lange Coupler model in ADS. 89

    [1] Chen-Kuo Chu, “Study of Power Amplifier MMICs for Transmitter System Applications”, National Cheng Kung University Institute of Microelectronics Engineering Master's and Doctoral Program, 2008.
    [2] S. Kumar and K. B. Moore, “The evolution of global positioning system (GPS) technology,” Journal of science Education and Technology, vol. 11, no. 1, pp. 59-80, 2002.
    [3] T. Rappaport et al., “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, vol. 1, May 2013, pp. 335–49.
    [4] H. Zhao et al., “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and Around Buildings in New York City,” IEEE ICC ’13, June 2013, pp. 516–67.
    [5] T. Kim et al., “Tens of Gbps Support with mmWave Beamforming Systems for Next Generation Communications,” IEEE GLOBECOM ’13, Dec. 2013, pp. 3790–95.
    [6] F. Khan and Z. Pi, “ mmWave Mobile Broadband (MMB):Unleashing the 3–300GHz Spectrum, ” IEEE Sarnoff Symp. 34th, 2011.
    [7] J. Murdock et al., “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus Environment,” Wireless Commun. Network. Conf., Apr. 2012, pp. 3085–90.
    [8] People's Posts and Telecommunications, “ ITU-R officially confirms the name of 5G, and the pace of research in IMT-2020 is accelerated, ” 2015. [Online]. Available: http://tech.sina.com.cn/t/2015-11-02/doc-ifxkhcfn4291207.shtml.
    [9] Yu Xuan-Sun, “ IMT-2020, ” 2022. [Online]. Available: https://baike.baidu.hk/item/IMT-2020/18773712#reference-[1]-0-wrap.
    [10] Wei Zheng-Han, “5G will be commercially available in 2020, ” 2018. [Online].Available: http://tc.people.com.cn/BIG5/n1/2018/0118/c183008-29772510.html.
    [11] 3GPP TR-38.900 v14.2.0 “ Study on channel model for frequency spectrum above 6 GHz,” June 2017.
    [12] Xiang Yu-Chen, “ 28GHz Phased Array Module for 5G, ” 2019. [Online].Available: https://ictjournal.itri.org.tw/content/Messagess/contents.aspx?&MmmID=654304432061644411&CatID=654313611231473607&MSID=1035143735020131450
    [13] “What do 5G concept stocks look at? Sub 6. Where is the millimeter wave difference? Understand the 3 major trends of the industry chain in one article, ” 2021. [Online]. Available: https://www.bnext.com.tw/article/60653/5g-stock-industry-cellphone-december.
    [14] Jin Shao;Rongguo Zhou, “ Design of broadband GaN doherty power amplifiers,” 2014 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR)
    [15] K. Aldubaikhy, W. Wu, N. Zhang, N. Cheng and X. Shen, “ mmWave IEEE 802.11ay for 5G Fixed Wireless Access, ” in IEEE Wireless Communications, vol. 27, no. 2, pp. 88-95, April 2020, doi: 10.1109/MWC.001.1900174.
    [16] O. Ambacher, “ Growth and applications of group III-nitrides, ” Journal of Physics D Applied Physics, vol. 31, no. 20, pp. 2653-2710, Oct. 1998.
    [17] ElectronicsTutorials, “ Amplifier class, ” 2014. [Online]. Available: https://www.electronics-tutorials.ws/amplifier/amplifier-classes.html.
    [18] I.D.Robertson, S.Porret, “ RFIC and MMIC Design and Technology (Materials, Circuits and Devices) 2nd ed.” The Institution of Engineering and Technology, pp. 102-109, Jan.2001
    [19] lausai, “ Intermodulation Distortion, ” 2019. [Online]. Available: http://lausai360.blogspot.com/2019/04/intermodulation-distortion.html.
    [20] A. Jarndal, “ A simplified modelling approach for AlGaN/GaN HEMTs using pinched cold S-parameters, ” in 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), 2013: IEEE, pp. 1-4.
    [21] G. Collinson and M. Jones, “ A Novel Technique for Measuring Small Signal S-Parameters Of An Rf/Microwave, Transistor, Power Amplifying Stage for Use in Power Amplifier Stability Analysis”, 1993 IEEE MTT-S International Microwave Symposium Digest, pp. 1255-1258, June 1993, doi: 10.1109/MWSYM.1993.277101
    [22] S. C. Cripps, “ RF Power Amplifier for Wireless Communications,” Aretech House, Second Edition, 2006.
    [23] Bruno Pattan, “ The Versatile Butler Matrix,” November 14, 2004, Microwave Journal.
    [24] H.J. Riblet, “ The Short-slot Hybrid Junction,” Proc. IRE, February 1952.
    [25] J. Butler and R. Lowe, “ Beam-forming Matrix Simplifies Design of Electrically Scanned Antennas,” Electronic Design, April 1961.
    [26] W.A. Sanders, “ The Butler Matrix Transponder,” COMSAT Technical Review, Fall 1974.
    [27] J.P. Shelton and K.S. Kelleher, “ Multiple Beams from Linear Arrays,” IRE Transactions on Antennas and Propagation, March 1961.
    [28] T. MacNamara, “ Simplified Design Procedure for Butler Matrices Incorporating 90° and 180° Hybrids,” IEE Proc. H, Microwave and Antenna and Propagation, 1987, pp. 50–54.
    [29] J.R.F. Guy, “ Proposal for the Use of Reflected Signals Through a Single Butler Matrix to Produce Multiple Beams From a Circular Array Antenna,” Electronic Letters, 1985, pp. 209–211.
    [30] R. Levy, “ A High Power X-band Butler Matrix,” Microwave Journal, Vol. 11, No. 4, April 1968.
    [31] R.C. Hansen, Microwave Scanning Antennas: Volume III, Academic Press, New York, NY.
    [32] J.D. Kraus, Antennas, McGraw-Hill, New York, NY, 1950.
    [33] K. Kibaroglu et al., “ An ultra low-cost 32-element 28 GHz phased-arraytransceiver with 41 dBm EIRP and 1.0-1.6 Gbps 16-QAM link at 300meters,” in 2017 IEEE RFIC, June 2017, pp. 73–76.
    [34] B. Sadhu et al., “ A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication,” in 2017 IEEE ISSCC, Feb 2017, pp. 128–129.
    [35] B. Rupakula, A. Nafe, S. Zihir, T. W. Lin, and G. M. Rebeiz, “ A 64 GHz 2 Gbps transmit/receive phased-array communication link in SiGe with 300 meter coverage, ” in 2017 IEEE IMS, June 2017, pp. 1599–1601.
    [36] Risto Valkonen, “ Compact 28-GHz phased array antenna for 5G access, ” in 2018 IEEE IMS, June 2018, pp. 1334–1337.
    [37] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, “ A Quad-Core 28-32 GHz Transmit/Receive 5G Phased-Array IC with Flip-Chip Packaging in Si-Ge BiCMOS,” Microwave Symposium (IMS), 2017 IEEE MTT-S International,May 2017, pp. 1892-1894.
    [38] M. Tsuji, T. Nishikawa, K. Wakino, and T. Kitazawa, “ Bi-directionally fed phased-array antenna downsized with variable impendence phase shifter for ISM band,” IEEE Trans. Microw. Theory Tech., vol. 54 ,no.7, pp.2962-2969, Jul. 2006.
    [39] B.T. Henoch and P. Tamm, “ A 360 reflection type diode phase modulator,” IEEE Trans. Microw. Theory Tech., vol. MTT-19 no.1, pp. 103-105, Jan. 1971.
    [40] R.V. Garver, “ 360 varactor linear phase modulator,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no.3, pp.137-147, Mar. 1969.
    [41] L.R. Whicker, “ Forward-special issue on microwave control devices for array antenna systems,” IEEE Trans. Microw. Theory Tech., vol.MTT-22, no. 6, pp.589-590, Jun. 1974.
    [42] M. Aust, H. Wang, R. Carandang, K. Tan, C. H. Chen, T. Trinh, R. Esfandiari, and H. C. Yen, “ GaAs monolithic component development for Q-band phased array application,” in IEEE MTT-S Int. Dig, Albuquerque, NM, Juan 1992, pp. 703-706
    [43] V. E. Dunn, J. Yang, “ Switched transmission-line type Q-band 4 b MMIC phased shifter using InGaAs PIN diodes,” Electron. Lett., vol.46, no. 3, pp. 225-226, Feb. 2010.
    [44] D. Kajfez, Z. Paunovic, and S. Pavlin, “ Simplified design of Lange coupler, ” IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 10, pp. 806-808, 1978.
    [45] J. Lange, “ Interdigitated stripline quadrature hybrid (correspondence), ” IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1150-1151, 1969.
    [46] K. Janisz, R. Smolarz, A. Rydosz, K. Wincza and S. Gruszczynski, “ Compensated 3-dB lange directional coupler in suspended microstrip technique, ” 2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 2017, pp. 288-291, doi: 10.1109/MAPE.2017.8250858.
    [47] K. Rangra et al., “ Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: design and fabrication, ” Sensors and Actuators A: Physical, vol. 123, pp. 505-514, 2005.
    [48] A. Tajik, A. S. Alavijeh, and M. Fakharzadeh, “ Asymmetrical 4×4 Butler Matrix and its Application for Single Layer 8×8 Butler Matrix, ” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5372-5379, 2019.
    [49] M. Bona, L. Manholm, J. Starski, and B. Svensson, “ Low-loss compact Butler matrix for a microstrip antenna, ” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 9, pp. 2069-2075, 2002.
    [50] M. Nedil, T. A. Denidni, and L. Talbi, “ Novel Butler matrix using CPW multilayer technology, ” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 499-507, 2006.
    [51] J. S. Néron and G. Y. Delisle, “ Microstrip EHF Butler matrix design and realization, ” ETRI journal, vol. 27, no. 6, pp. 788-797, 2005.
    [52] Chen-Lin KO, “ TSRI EDA Cloud ADS Software User Manual, ” Feb 2021.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE