| 研究生: |
宋毓翔 Sung, Yu-Hsiang |
|---|---|
| 論文名稱: |
高方向性氧化鋅奈米片狀結構之製備及其應用於光觸媒與太陽能電池之研究 Formation of Aligned ZnO Nanosheets for Use in Photocatalysts and Solar Cells |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 氧化鋅奈米片狀結構 、化學浴沉積法 、光觸媒 、金奈米粒子 、有機/無機混摻型太陽能電池 |
| 外文關鍵詞: | ZnO nanosheet structure, chemical bath deposition, photocatalyst, gold nanoparticles, organic/inorganic hybrid solar cell |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以兩步驟成長氧化鋅奈米片狀結構。首先,以化學浴沉積法於已披覆氧化鋅晶種層之透明導電基板上,成長適量的針狀氧化鋅奈米線。第二步驟則利用室溫化學浴沉積法,可沿著針狀奈米線及其周圍成長出兼備高密度與高方向性的氧化鋅奈米片狀結構。如再次利用室溫化學浴沉積法,可使氧化鋅奈米片狀結構延伸其橫向側枝,形成三維氧化鋅奈米結構。根據高解析穿透式電子顯微鏡分析,顯示氧化鋅奈米片狀型態為單晶結構,成長方式是沿著ZnO[0001]方向垂直於基板變長,同時亦朝著[11-20]或[2-1-10]方向平行於基板變寬,而展現出奈米片狀結構。本研究利用濺鍍法沉積不同數量的金奈米粒子於奈米片狀結構上形成複合材料,並將其應用於光觸媒降解甲基橙,反應四小時可使濃度降至原先的25.1 %,與氧化鋅奈米片狀相比,提升0.34倍。另外,本研究將聚(3-己基噻吩) [poly(3-hexylthiophene-2,5-diyl), P3HT]滲入氧化鋅奈米片狀結構間,以組裝有機/無機混摻型太陽能電池,最高效率可達0.88 %。本研究亦利用時間解析光激螢光光譜(time-resolved photoluminescence,TRPL)及電化學交流阻抗分析(electrochemical impedance spectroscopic,EIS)分析電池中激子(exciton)解離與電子傳輸之特性。進一步利用D149染料做為氧化鋅奈米片狀結構與P3HT之介面修飾劑,雖然短路電流降低,但可大幅提升開路電壓與填充因子。
Successful growth of ZnO nanosheets (NS) and derived 3-dimensional nanostructure (NS-spine) by simple wet chemical route have been demonstrated in this study. The needle-liked ZnO nanowire (NW) array was first synthesized on transparent conductive oxide substrate by aqueous chemical bath deposition (CBD). The ZnO NS and ZnO NS-spine were formed using another aqueous CBD at room temperature. High resolution transmission electron microscope results indicate that ZnO NS possesses single crystal structure with growth direction of [0001] and [11-20]/[2-1-10] vertical to and parallel to substrate, respectively. Photodegradation of methyl orange has been performed to investigate the photocatalytic properties of the Au NPs/ZnO NS and pure ZnO NS arrays. A 34 % enhancement of photocatalytic activity of the ZnO NS array is observed when forming the Au NPs/ZnO NS composite array. Additionally, poly(3-hexylthiophene-2,5-diyl) (P3HT)/ZnO NS array hybrid solar cells were fabricated and an efficiency of 0.88 % were obtained in this study. Time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopic (EIS) were employed to analyze the charge transfer and recombination at interfaces of P3HT and ZnO NSs in the cells, respectively. Furthermore, Voc and FF of the ZnO NS/P3HT hybrid solar cell can be improved by D149 modification. However, the Jsc is lowered due to poor charge separation and enhanced recombination at interface of P3HT and ZnO NSs.
[1]呂宗昕,全面進攻奈米科技與太陽能電池。天下遠見股份有限公司,29-143,2009
[2] 張立德,奈米材料。五南圖書出版有限公司,63,2002
[3] 曹茂盛,奈米材料導論。學富文化出版社,23,2002
[4] Weber, E. J.; Stickney, V. C., Hydrolysis kinetics of reactive blue 19-vinyl sulfone. Water Res. 27, 1, 63-67, 1993.
[5] Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann,J. M., Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B-Environ. 31, 2, 145-157, 2001.
[6] Prevot, A. B.; Baiocchi, C.; Brussino, M. C.; Pramauro, E.; Savarino, P.; Augugliaro, V.; Marci, G.; Palmisano, L., Photocatalytic degradation of acid Blue 80 in aqueous solutions containing TiO2 suspensions. Environ. Sci. Technol. 35, 5, 971-976, 2001.
[7] Neppolian, B.; Choi, H. C.; Sakthivel, S.; Arabindoo, B.; Murugesan,V., Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere. 46, 8, 1173-1181, 2002.
[8] Saquib, M.; Muneer, M., TiO2-mediated photocatalytic degradation of a triphenylmethane dye(gentian violet), in aqueous suspensions. Dyes Pigment. 56, 1, 37-49, 2003.
[9] Meshko, V.; Markovska, L.; Mincheva, M.; Rodrigues, A. E.,Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water Res. 35, 14, 3357-3366, 2001.
[10] Kuo, W. S.; Ho, P. H., Solar photocatalytic decolorization of methylene blue in water. Chemosphere. 45, 1, 77-83, 2001.
[11] Galindo, C.; Jacques, P.; Kalt, A., Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere. 45, 6-7, 997-1005, 2001.
[12] 溫慧怡,高長寬筆氧化鋅奈米柱之生成-氫氣後處理效應研究,成
功大學化工系碩士論文,民國92年。
[13] Khan, A.; Jadwisienczak, W. M.; Kordesch, M. E., From Zn microspheres to hollow ZnO microspheres: A simple route to the growth of large scale metallic Zn microspheres and hollow ZnO microspheres. Physica E. 33, 2, 331-335, 2006.
[14] Kaluza, S.; Schroter, M. K.; d'Alnoncourt, R. N.; Reinecke, T.; Muhler, M., High Surface Area ZnO Nanoparticles via a Novel Continuous Precipitation Route. Adv. Funct. Mater. 18, 22, 3670-3677, 2008.
[15] Wu, J. J.; Liu, S. C., Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 3, 215-218, 2002.
[16] Wen, X. G.; Fang, Y. P.; Pang, Q.; Yang, C. L.; Wang, J. N.; Ge, W. K.; Wong, K. S.; Yang, S. H., ZnO nanobelt arrays grown directly from and on zinc substrates: Synthesis, characterization, and applications. J. Phys. Chem. B. 109, 32, 15303-15308, 2005.
[17] Wu, C. T.; Liao, W. P.; Wu, J. J., Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells. J. Mater. Chem. 21, 9, 2871-2876, 2011.
[18] Das, J.; Khushalani, D., Nonhydrolytic Route for Synthesis of ZnO and Its Use as a Recyclable Photocatalyst. J. Phys. Chem. C, 114, 6, 2544-2550, 2010.
[19] Lu, F.; Cai, W. P.; Zhang, Y. G., ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performance. Adv. Funct. Mater. 18, 7, 1047-1056, 2008.
[20] Wu, J. J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y., Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Appl. Phys. Lett. 90, 21, 213109-1-3, 2007.
[21] Xu, J. Q.; Pan, Q. Y.; Shun, Y. A.; Tian, Z. Z., Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuator B-Chem. 66, 1-3, 277-279, 2000.
[22] Lee, C. J.; Lee, T. J.; Lyu, S. C.; Zhang, Y.; Ruh, H.; Lee, H. J., Field emission from well-aligned zinc oxide nanowires grown at low temperature. Appl. Phys. Lett. 81, 19, 3648-3650, 2002.
[23] Liao, D. L.; Badour, C. A.; Liao, B. Q., Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J. Photochem. Photobiol. A-Chem. 194, 1, 11-19, 2008.
[24] Lu, H. B.; Wang, S. M.; Zhao, L.; Li, J. C.; Dong, B. H.; Xu, Z. X., Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J. Mater. Chem. 21, 4228-4234, 2011.
[25] Zhang, L. S.; Wang, W. Z.; Zhou, L.; Xu, H. L., Bi2WO6 nano- and microstructures: Shape control and associated visible-light-driven photocatalytic activities. Small, 3, 9, 1618-1625, 2007.
[26] Xu, L.; Hu, Y. L.; Pelligra, C.; Chen, C. H.; Jin, L.; Huang, H.; Sithambaram, S.; Aindow, M.; Joesten, R.; Suib, S. L., ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity. Chem. Mat. 21, 13, 2875-2885, 2009.
[27] McLaren, A.; Valdes-Solis, T.; Li, G. Q.; Tsang, S. C., Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. J. Am. Chem. Soc. 131, 35, 12540-12541, 2009.
[28] Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S., Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc. 131, 9, 3152-3153, 2009.
[29] Bahnemann, D. W.; Hilgendorff, M.; Memming, R., Charge carrier dynamics at TiO2 particles: Reactivity of free and trapped holes. J. Phys. Chem. B. 101, 21, 4265-4275, 1997.
[30] Yoshihara, T.; Katoh, R.; Furube, A.; Tamaki, Y.; Murai, M.; Hara, K.; Murata, S.; Arakawa, H.; Tachiya, M., Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400-2500 nm) transient absorption spectroscopy. J. Phys. Chem. B. 108, 12, 3817-3823, 2004.
[31] Gaya, U. I.; Abdullah, A. H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C-Photochem. Rev. 9, 1, 1-12, 2008.
[32] Gratzel, M., Photoelectrochemical cells. Nature. 414, 6861, 338-344, 2001.
[33] Zhang, Y.; Wan, J.; Ke, Y., A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. Journal of Hazardous Materials. 177, 1-3, 750-754, 2010.
[34] Chen, C. C.; Fan, H. J.; Jan, J. L., Degradation pathways and efficiencies of acid blue 1 by photocatalytic reaction with ZnO nanopowder. J. Phys. Chem. C. 112, 31, 11962-11972, 2008.
[35] Becquerel, A. E., Le spectre solaire et la constitution de la lumiere electrique. Compt. Rend. Acad. Sci. 9, 33, 145, 1839.
[36] Chapin, D. M.; Fuller, C. S. ; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 25, 676-677,1954.
[37] Shafarman, W.N.; Lars S. In: Antonio H, Hegedus S, editors. Handbook of photovoltaic science and engineering. Chichester: John Wiley and Sons;1138, 2003.
[38] Wu, J. J.; Wu, C. T., Room-Temperature Synthesis of Hierarchical Nanostructures on ZnO Nanowire Anodes for Dye-Sensitized Solar Cell.J. Mater. Chem. DOI: 10.1039/b000000x, 2011.
[39] Xu, F.; Dai, M.; Lu, Y. N.; Sun, L. T., Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells. J. Phys. Chem. C. 114, 6, 2776-2782, 2010.
[40] Goldberger, J.; Sirbuly, D. J.; Law, M.; Yang, P., ZnO nanowire transistors. J. Phys. Chem. B. 109, 1, 9-14, 2005.
[41] Wang, X. D.; Liu, J.; Song, J. H.; Wang, Z. L., Integrated nanogenerators in biofluid. Nano Lett. 7, 8, 2475-2479, 2007.
[42] Xu, L.; Hu, Y. L.; Pelligra, C.; Chen, C. H.; Jin, L.; Huang, H.; Sithambaram, S.; Aindow, M.; Joesten, R.; Suib, S. L., ZnO with Different Morphologies Synthesized by Solvothermal Methods for Enhanced Photocatalytic Activity. Chem. Mat. 21, 13, 2875-2885, 2009.
[43] Jang, J. M.; Kim, S. D.; Choi, H. M.; Kim, J. Y.; Jung, W. G., Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process. Mater. Chem. Phys. 113, 1, 389-394, 2009.
[44] Ku, C. H.; Wu, J. J., Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology. 18, 50, 505706-1-9, 2007.
[45] Xu, L. F.; Chen, Q. W.; Xu, D. S., Hierarchical ZnO nanostructures obtained by electrodeposition. J. Phys. Chem. C. 111, 31, 11560-11565, 2007.
[46] Xu, L. F.; Guo, Y.; Liao, Q.; Zhang, J. P.; Xu, D. S., Morphological control of ZnO nanostructures by electrodeposition. J. Phys. Chem. B. 109, 28, 13519-13522, 2005.
[47]Kapteijn, F.; Marin, G. B.; Moulijn, J. A. Catalytic reaction engineering. In: Moulijn.; van Leeuwen, P. W. N. M.; van Santen, R. A., ed. Catalysis: an integrated approach to homogeneous, heterogeneous and industrial catalysis. Amsterdam: Elsevier. 251-306, 1993.
[48] Zhang, H. J.; Chen, G. H.; Bahnemann, D. W., Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19, 29, 5089-5121, 2009.
[49] Rajeshwar, K.; Osugi, M. E.; Chanmanee, W.; Chenthamarakshan, C. R.; Zanoni, M. V. B.; Kajitvichyanukul, P.; Krishnan-Ayer, R.,Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C-Photochem. Rev. 9, 4, 171-192, 2008.
[50] Zhang, F. L.; Zhao, J. C.; Shen, T.; Hidaka, H.; Pelizzetti, E.; Serpone, N., TiO2-assisted photodegradation of dye pollutants - II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl. Catal. B-Environ. 15, 1-2, 147-156, 1998.
[51] Bandara, J.; Mielczarski, J. A.; Kiwi, J., Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism of charge transfer during the degradation. Langmuir. 15, 22, 7680-7687, 1999.
[52] Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M., Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B-Environ. 31, 2, 145-157, 2001.
[53] Galindo, C.; Jacques, P.; Kalt, A., Photodegradation of theaminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2 UV/TiO2 and VIS/TiO2 - Comparative mechanistic and kinetic investigations. J. Photochem. Photobiol. A-Chem. 130, 1, 35-47, 2000.
[54] Ollis, D. F., Kinetics of liquid phase photocatalyzed reactions: An illuminating approach. J. Phys. Chem. B. 109, 6, 2439-2444, 2005.
[55] Xu, Y. M.; Langford, C. H., UV- or visible-light-induced degradation of X3B on TiO2 nanoparticles: The influence of adsorption. Langmuir. 17, 3, 897-902, 2001.
[56] Hidaka, H.; Zhao, J.; Pelizzetti, E.; Serpone, N., Photodegradation of surfactant. 8. Comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldimethulammoniumchloride on the TiO2 surface. J. Phys. Chem. 96, 5, 2226-2230, 1992.
[57] Konstantinou, I. K.; Albanis, T. A., TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations - A review. Appl. Catal. B-Environ. 49, 1, 1-14, 2004.
[58] Tennakone, K.; Heperuma, O. A.; Bandara, J. M. S.; and Kiridena,W. C. B., TiO2 and WO3 semiconductor particles in contact: photochemical reduction of WO3 to the non-stoichiometric blue form Semicond. Sci. Technol. 7, 423-424, 1992.
[59] Kwon, Y. T.; Song, K. Y.; Lee, W. I.; Choi, G. J.; Do, Y. R., Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J. Catal. 191, 1, 192-199, 2000.
[60] Kisch, H.; Weiss, H., Tuning photoelectrochemical and photocatalytic properties through electronic semiconductor-support interaction. Adv. Funct. Mater. 12, 8, 483-488, 2002.
[61] Srinivasan, S. S.; Wade, J.; Stefanakos, E. K., Visible light photocatalysis via CdS/TiO2 nanocomposite materials. J. Nanomater. 7,87326-1-7, 2006.
[62] Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 395, 6702, 583-585, 1998.
[63] Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.;Sekiguchi, T.; Gratzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat. Mater. 2, 6, 402-407, 2003.
[64] Gratzel, M.; Howe, R. F., Electron-paramagnetic resonance studies of doped TiO2 colloids. J. Phys. Chem. 94, 6, 2566-2572, 1990.
[65] Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M., Spectroscopic, photoconductivity and photocatalytic studies of TiO2 colloids – naked and with the lattice doped with Cr3+, Fe3+ and V5+ cations. Langmuir. 10, 3, 643-652, 1994.
[66] Bally, A. R.; Korobeinikova, E. N.; Schmid, P. E.; Levy, F.; Bussy, F., Structural and electrical properties of Fe-doped TiO2 thin films. J. Phys. D-Appl. Phys. 31, 10, 1149-1154, 1998.
[67] Karakitsou, K. E.; Verykios, X. E., Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 97, 6, 1184-1189, 1993.
[68] Gracia, F.; Holgado, J. P.; Caballero, A.; Gonzalez-Elipe, A. R.,Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts. J. Phys. Chem. B. 108, 45, 17466-17476, 2004.
[69] Osterwalder, J.; Droubay, T.; Kaspar, T.; Williams, J.; Wang, C. M.; Chambers, S. A., Growth of Cr-doped TiO2 films in the rutile and anatase structures by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films. 484, 1-2, 289-298, 2005.
[70] Karvinen, S. M., The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide. Ind. Eng. Chem. Res. 42, 5, 1035-1043, 2003.
[71] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science. 293, 5528, 269-271, 2001.
[72] He, J. X.; Yang, P. J.; Sato, H.; Umemura, Y.; Yamagishi, A., Effects of Ag-photodeposition on photocurrent of an ITO electrode modified by a hybrid film of TiO2 nanosheets. J. Electroanal. Chem. 566 , 1, 227-233, 2004.
[73] Subramanian, V.; Wolf, E. E.; Kamat, P. V., Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration. J. Phys. Chem. B. 107, 30, 7479-7485, 2003.
[74] Subramanian V.; Wolf E. E.; Kamat P. V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 126, 15, 4943–4950, 2004.
[75] Pawinrat, P.; Mekasuwandumrong, O.; Panpranot, J., Synthesis of Au-ZnO and Pt-ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catal. Commun. 10, 10, 1380-1385, 2009.
[76] Im, J.; Singh, J.; Soares, J. W.; Steeves, D. M.; Whitten, J. E., Synthesis and Optical Properties of Dithiol-Linked ZnO/Gold Nanoparticle Composites. J. Phys. Chem. C. 115, 21, 10518-10523, 2011.
[77] Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M., Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 2005, 15 (12), 1945-1954.
[78] McLaren, A.; Valdes-Solis, T.; Li, G. Q.; Tsang, S. C., Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity. J. Am. Chem. Soc. 131, 35, 12540-12541, 2009.
[79] Li, G. R.; Hu, T.; Pan, G. L.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y., Morphology-function relationship of ZnO: Polar planes, oxygen vacancies, and activity. J. Phys. Chem. C. 112, 31, 11859-11864, 2008.
[80] Kislov, N.; Lahiri, J.; Verma, H.; Goswami, D. Y.; Stefanakos, E.; Batzill, M., Photocatalytic Degradation of Methyl Orange over Single Crystalline ZnO: Orientation Dependence of Photoactivity and Photostability of ZnO. Langmuir. 25, 5, 3310-3315, 2009.
[81] Kippelen, B.; Bredas, J. L., Organic photovoltaics. Energy Environ. Sci. 2, 3, 251-261, 2009.
[82] Bernede, J. C., Organic photovoltaic cells: History, principle andtechniques. J. Chil. Chem. Soc. 53, 3, 1549-1564, 2008.
[83] Tang, C. W., Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48, 183-185, 1986.
[84] Saunders, B. R.; Turner, M. L., Nanoparticle-polymer photovoltaic cells.Adv. Colloid Interface Sci. 138, 1, 1-23, 2008.
[85] Meskers, S. C. J.; Hubner, J.; Oestreich, M.; Bassler, H., Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: Experiment and Monte Carlo simulations. J. Phys. Chem. B. 105, 38, 9139-9149, 2001.
[86] Zhou, Y. F.; Eck, M.; Kruger, M., Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ. Sci. 3, 12, 1851-1864, 2010.
[87] Zotti, G.; Vercelli, B.; Berlin, A.; Pasini, M.; Nelson, T. L.; McCullough, R. D.; Virgili, T., Self-Assembled Structures of Semiconductor Nanocrystals and Polymers for Photovoltaics. 2. Multilayers of CdSe Nanocrystals and Oligo(poly)thiophene-Based Molecules. Optical, Electrochemical, Photoelectrochemical, and Photoconductive Properties. Chem. Mat. 22, 4, 1521-1532, 2009.
[88] Liu, J. S.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J., Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 21, 6550-6551, 2004.
[89] Lin, Y. Y.; Chu, T. H.; Li, S. S.; Chuang, C. H.; Chang, C. H.; Su, W. F.; Chang, C. P.; Chu, M. W.; Chen, C. W., Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells. J. Am. Chem. Soc. 131, 10, 3644-3649, 2009.
[90] Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J., Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 4, 579-583, 2005.
[91] Gupta, S.; Zhang, Q. L.; Emrick, T.; Russell, T. P., "Self-corralling" nanorods under an applied electric field. Nano Lett. 6, 9, 2066-2069, 2006.
[92] Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C., Blocking reactions between indium-tin oxide and poly(3,4–3thylenedioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer. Appl. Phys. Lett. 80, 2788–2790, 2002.
[93] Lee, Y. J.; Lloyd, M. T.; Olson, D. C.; Grubbs, R. K.; Lu, P.; Davis, R.J.; Voigt, J. A.; Hsu, J. W. P., Optimization of ZnO Nanorod Array Morphology for Hybrid Photovoltaic Devices. J. Phys. Chem. C. 113, 35, 15778-15782, 2009.
[94] Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J. W. P., Photocurrent Enhancement in Polythiophene- and Alkanethiol-Modified ZnO Solar Cells. Adv. Mater. 20, 24, 4755-4756, 2008.
[95] Clark, J.; Silva, C.; Friend, R. H.; Spano, F. C., Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98, 20, 4, 2007.
[96] Xu, C. K.; Yang, K. K.; Huang, L. W.; Wang, H., Vertically aligned ZnO nanodisks and their uses in bulk heterojunction solar cells. J. Renew. Sustain. Energy. 2, 5, 05310-1-7, 2010.
[97] 謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二期,第二卷,28-39, 2005
[98] Pal, U.; Santiago, P., Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B. 109, 32, 15317-15321, 2005.
[99] Yang, M.; Pang, G. S.; Jiang, L. F.; Feng, S. H., Hydrothermal synthesis of one-dimensional zinc oxides with different precursors. Nanotechnology. 17, 1, 206-212, 2006.
[100] Zhang, T. R.; Dong, W. J.; Keeter-Brewer, M.; Konar, S.; Njabon, R. N.; Tian, Z. R., Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 128, 33, 10960-10968, 2006.
[101] Chen, J. T.; Wang, J.; Zhuo, R. F.; Yan, D.; Feng, J. J.; Zhang, F.; Yan, P. X., The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process. Appl. Surf. Sci. 255, 7, 3959-3964, 2009.
[102] Liu, J.; She, J. C.; Deng, S. Z.; Chen, J.; Xu, N. S., Ultrathin seed-layer for tuning density of ZnO nanowire arrays and their field emissioncharacteristics. J. Phys. Chem. C. 112, 31, 11685-11690, 2008.
[103] Arabatzis, I. M.; Stergiopoulos, T.; Andreeva, D.; Kitova, S.; Neophytides, S. G.; Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation.P., J. Catal. 220, 1, 127-135, 2003.
[104]邱品翔,特殊形狀金屬奈米粒子製備技術及其光電應用,成功大學
光電工程與科學研究所博士論文,民國99年。
[105] Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P., Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct. Mater. 20, 4, 561-572, 2010.
[106] Wu, J. J.; Tseng, C. H., Photocatalytic properties of nc-Au/ZnO nanorod composites. Appl. Catal. B-Environ. 66, 1-2, 51-57, 2006.
校內:2016-08-31公開