| 研究生: |
余佾昕 Yu, Yi-Sin |
|---|---|
| 論文名稱: |
氧化鈦及氧化鎂共添加對氧化鋁燒結行為之影響 Sintering behavior of alumina codoped with MgO and TiO2 |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 共添加 、氧化鎂 、氧化鈦 、氧化鋁 |
| 外文關鍵詞: | TiO2, MgO, codoped, alumina |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
添加氧化鈦能促進氧化鋁燒結收縮,但會造成晶粒快速成長;添加氧化鎂則能抑制氧化鋁晶粒成長,並能獲得較高之最終密度。因此,本研究以了解氧化鈦 (0.4, 1 wt%) 及氧化鎂 (0.05, 0.2, 0.4 wt%) 共添加對氧化鋁燒結行為以及晶粒成長之影響做探討,並以在較低溫度獲得高緻密且細晶粒之氧化鋁陶瓷體為目的。
研究結果發現,單一添加氧化鈦之樣品,隨著添加氧化鈦量增多,可以較快的速率達到緻密,並可獲得較高之最終密度。而氧化鈦固定為 1 wt% 之共添加樣品,隨著氧化鎂添加含量之增加,與單一添加氧化鈦之樣品比較,抑制晶粒成長之效果亦逐漸顯著,燒結收縮速率也隨之降低,但相對於純氧化鋁而言,仍保有較大的燒結收縮速率以及收縮量,可獲得較高之最終密度。而燒結體晶粒大小則介於單一添加氧化鈦及純氧化鋁燒結體間。
Doping TiO2 into alumina can promote its sintering shrinkage and grain growth; while, another dopant-MgO can inhibit grain growth and enhance the final sintered density. In this study, we investigate the sintering and grain growth behavior of pure alumina codoped with TiO2 (0.4, 1wt%) and MgO (0.05, 0.2, 0.4 wt%) base on their individual specific functions.
The results show that alumina doped only with TiO2 can be densified easily, and when the doping quality was raised from 0.4 to 1 wt%, the densification rate increases simultaneously. When the TiO2 doping quantity was fixed at 1 wt% and codoped with MgO from 0.05 to 0.4 wt% gradually, the effect on grain growth inhibition is obvious compare with TiO2 single doping. In this TiO2 and MgO co-doping system, the grain size of sintered bulk is between TiO2 single doped alumina and pure alumina. Otherwise, the specimens can be sintered easily than pure alumina yet. Hence, we can get fine grain densified alumina specimens easily in lower temperature.
1. 張立德、牟季美,奈米材料和奈米結構,滄海書局,(2002)。
2. J. S. Reed, Introduction of the Principles of Ceramic Processing, John Wiley and Sons, New York, (1995)
3. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Part 2 Data Reviews-Selection 1: High-Alumina Ceramic, National Physical Laboratory, HMSO, London, (1987)
4. C. Klein and C. S. Hurlbut, Manual of Mineralogy, New York :Wiley, (1993)
5. M. F. Ashby, “A First Report on Sintering Diagrams,” Acta Metal., 22, 275-289, (1974)
6. R. L. Coble, “Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799, (1961)
7. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley and Sons, New York, (1975)
8. P. L. Chen and I. W. Chen, “Sintering of Fine Oxide Powders: Ⅱ, Sintering Mechanisms,” J. Am. Ceram. Soc., 80[3] 637-645, (1997)
9. G. L. Messing and M. Kumagai, “Low Temperature Sintering of 脉-Alumina-Seeded Boehimite Gel,” J. Am. Ceram. Soc., 73[10] 88-91, (1994)
10. T. S. Yeh and M. D. Sacks, “Low Temperature Sintering of Aluminum Oxide,” J, Am, Ceram. Soc., 71[10] 841-844, (1988)
11. R. J. Brook, High Tech. Ceramics: Proceedings of The World Congress on High Tech Ceramics, Ed. By P. Vincenzini, Amsterdam, 757-761, (1987)
12. R. D. Bagley, I. B. Cutler, and D. L. Johnson, “Effect of TiO2 on Initial Sintering of Al2O3,” J. Am. Ceram. Soc., 53[3] 136-141, (1970)
13. E. R. Winkler, J. F. Sarver, and I. B. Cutler, “Solid Solution of Titanium Dioxide in Aluminum Oxide,” J. Am. Ceram. Soc., 49[12] 634-637, (1966)
14. K. Hamano, C. S. Hwang, Z. E. Nakagawa, and Y. Ohya, “Effects of TiO2 on Sintering of Alumina Ceramics,” 窯協, 94[5] 505-511, (1986)
15. C. S. Hwang, Z. E. Nakagawa, and K. Hamano, “Microstructures and Mechanical Properties of TiO2 Added Alumina Ceramics,” 窯協, 94[8] 761-766, (1986)
16. C. S. Hwang, Z. E. Nakagawa, and K. Hamano, “Microstructures and Mechalical Properties of TiO2-Doped Alumina Ceramics Owing to Decomposition of Formed Al2TiO5,” J. Ceram. Soc. Jap. 102[3] 252-257, (1994)
17. L. Miller, A. Avishai, and W. D. Kaplan, “Solubility Limit of MgO in Al2O3 at 1600℃,” J. Am. Ceram. Soc., 89[1] 350-353, (2006)
18. S. K. Roy and R. L. Coble, “Solubilities of Magnesia, Titania and Magnesium Titanate in Aluminum Oxide,” J. Am. Ceram. Soc., 5[1] 1-6, (1968)
19. P. J. Jorgensen and J. H. Westbrook, “Role of Solute Segregation at Grain Boundaries During Final-Stage Sintering of Alumina,” J. Am. Ceram. Soc., 47[7] 332-338, (1964)
20. K. A. Berry and M. P. Harmer, “Effect of MgO Solute on Microstructure Development in Al2O3,” J. Am. Ceram. Soc., 69[2] 143-149, (1986)
21. N. H. Shaw and R. J. Brook, “Structure and Grain Coarsening During the Sintering of Alumina,” J. Am. Ceram. Soc., 69[2] 107-110, (1986)
22. P. Gruffel, P. Carry,and A. Mocellin, Science of Ceramics, Ed. By D. Taylor, UK :The Institute of Ceramics, (1988)
23. Y. Ikuma and R. S. Gordon, “Enhancement of the Diffusional Creep of Polycrystalline Al2O3 by Simultaneous Doping with Manganese and Titanium,” J. Mater. Sci., 17, 2961-2967, (1982)
24. J. Cho, M. P. Harmer, H. M. Chan, J. M. Rickman, and A. M. Thompson, “Effect of Y and La on the Tensile Creep Behavior of Aluminum Oxide,” J. Am. Ceram. Soc., 80[4] 1013-1017, (1997)
25. S. Lartigue, C. Carry, and L. Priester, “Grain Boundaries in High Temperature Denformation of Yttria and Magnesia Co-doped Alumina,” J. Phys. Paris, C1, 51, 985-990, (1990)
26. A. G. Robertson, D. S. Wilkinson, and C. H. Caceres, “Creep and Creep Fracture in Hot-Pressed Alumina,” J. Am. Ceram. Soc., 74[5] 915-921, (1991)
27. F. Wakai, T. Iga, and T. Nagano, “Effect of Dispersion of ZrO2 Particles on Creep of Fine-Grained Alumina,” J. Am. Ceram. Soc., 74[9] 2258-2262, (1988)
28. J. D. French, J. Zhao, M. P. Harmer, H. M. Chan, and G. A. Miller, “Creep of Duplex Microstructures,” J. Am. Ceram. Soc., 77[11] 2857-2865, (1994)
29. Y. Z. Li, C. Wang, H. M. Chan, J. M. Rickman, and M. P. Harmer, “Codoping of Alumina to Enhance Creep Resistance,” J. Am. Ceram. Soc., 82[6] 1497-1504, (1999)
30. H. Erkalfa, Z. Misirli, and T. Baykara, “The Effect of TiO2 and MnO2 on Densification and Microstructural Development of Alumina,” Ceram. Inter., 34, 81-90, (1998)
31. T. J. Davies, A. A. Ogwu, N. Ridley, and Z. C. Wang, “Superplasticity in Ceramic Materials–I. The Observation of a “Superplastic Partition” in Ceramics,” Acta Mater., 44[6] 2373-2382, (1996)
32. Z. C. Wang, T. J. Davies, N. Ridley, and A. A. Ogwu, “Superplasticity of Ceramic Materials–II. Effect of Initial Porosity and Doping on The Superplastic Behaviour of Alumina,” Acta Mater., 44[11] 4301-4309, (1996)
33. J. Zhao and M. P. Harmer, “Sintering of Ultra-High-Purity Alumina Doped Simultaneously with MgO and FeO,” J. Am. Ceram. Soc., 70 [12] 860-866, (1987)
34. L. A. Xue and I. W. Chen, “Superplastic Alumina at Temperautres below 1300℃ Using Charge-Compensating Dopants,” J. Am. Ceram. Soc., 79[1] 233-238, (1996)
35. K. L. Gavrilov, S. J. Bennison, K. R. Mikeska, J. M. Chabala, and R. Levi-Setti, “Silca and Magnesia Dopant Distributions in Alumina by High-Resolution Scanning Secondary Ion Mass Spectrometry,” J. Am. Ceram. Soc., 82[4] 1001-1008, (1999)
36. K. L. Gavrilov, S. J. Bennison, K. R. Mikeska, and R. L. Setti, “Role of Magnesia and Silica in Alumina Microstructure Evolution,” J. Mater. Sci., 38, 3965-3972, (2003)