簡易檢索 / 詳目顯示

研究生: 余佾昕
Yu, Yi-Sin
論文名稱: 氧化鈦及氧化鎂共添加對氧化鋁燒結行為之影響
Sintering behavior of alumina codoped with MgO and TiO2
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 共添加氧化鎂氧化鈦氧化鋁
外文關鍵詞: TiO2, MgO, codoped, alumina
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 添加氧化鈦能促進氧化鋁燒結收縮,但會造成晶粒快速成長;添加氧化鎂則能抑制氧化鋁晶粒成長,並能獲得較高之最終密度。因此,本研究以了解氧化鈦 (0.4, 1 wt%) 及氧化鎂 (0.05, 0.2, 0.4 wt%) 共添加對氧化鋁燒結行為以及晶粒成長之影響做探討,並以在較低溫度獲得高緻密且細晶粒之氧化鋁陶瓷體為目的。
    研究結果發現,單一添加氧化鈦之樣品,隨著添加氧化鈦量增多,可以較快的速率達到緻密,並可獲得較高之最終密度。而氧化鈦固定為 1 wt% 之共添加樣品,隨著氧化鎂添加含量之增加,與單一添加氧化鈦之樣品比較,抑制晶粒成長之效果亦逐漸顯著,燒結收縮速率也隨之降低,但相對於純氧化鋁而言,仍保有較大的燒結收縮速率以及收縮量,可獲得較高之最終密度。而燒結體晶粒大小則介於單一添加氧化鈦及純氧化鋁燒結體間。

    Doping TiO2 into alumina can promote its sintering shrinkage and grain growth; while, another dopant-MgO can inhibit grain growth and enhance the final sintered density. In this study, we investigate the sintering and grain growth behavior of pure alumina codoped with TiO2 (0.4, 1wt%) and MgO (0.05, 0.2, 0.4 wt%) base on their individual specific functions.
    The results show that alumina doped only with TiO2 can be densified easily, and when the doping quality was raised from 0.4 to 1 wt%, the densification rate increases simultaneously. When the TiO2 doping quantity was fixed at 1 wt% and codoped with MgO from 0.05 to 0.4 wt% gradually, the effect on grain growth inhibition is obvious compare with TiO2 single doping. In this TiO2 and MgO co-doping system, the grain size of sintered bulk is between TiO2 single doped alumina and pure alumina. Otherwise, the specimens can be sintered easily than pure alumina yet. Hence, we can get fine grain densified alumina specimens easily in lower temperature.

    中文摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 相關文獻回顧與整理 3 2-1 氧化鋁的性質與晶體結構 3 2-1-1 氧化鋁特性 3 2-1-2 α-氧化鋁的晶體結構 3 2-2 固相燒結的過程與理論 4 2-2-1 燒結的基本原理以及機構 4 2-2-2 固態燒結模式 5 2-2-3 固態燒結中的晶粒成長 6 2-2-4 微粉的燒結行為 7 2-3 氧化物添加劑對氧化鋁燒結行為的影響 9 2-3-1 添加氧化鈦對氧化鋁燒結之影響 10 2-3-2 添加氧化鎂對氧化鋁燒結之影響 10 2-3-3 氧化物共添加對氧化鋁燒結之影響 12 第三章 實驗方法與步驟 30 3-1 實驗材料 30 3-2 粉末混合 31 3-3 生坯及燒結體製備 31 3-4 特性量測 32 3-4-1 熱差分析 32 3-4-2 燒結收縮 32 3-4-3 相鑑定 33 3-4-4 化學分析 33 3-4-5 密度量測 34 3-4-6 微結構觀察 34 3-4-7 晶粒大小與分布計算 35 第四章 結果與討論 42 4-1 起始粉末分析 42 4-2 添加劑之晶相變化與型態 43 4-3 共添加對坯體燒結行為之影響 45 4-3-1 等升溫速率燒結過程 45 4-3-2 等溫燒結收縮緻密過程 47 4-3-3 燒結體微結構之演變 49 4-4 綜合討論 51 4-4-1 共添加對晶粒大小─密度演變之影響 51 4-4-2 實驗結果與實驗目的之比較 54 第五章 結論 76 參考文獻 77 附錄 氧化鋁微結構照片 80 自述 89

    1. 張立德、牟季美,奈米材料和奈米結構,滄海書局,(2002)。
    2. J. S. Reed, Introduction of the Principles of Ceramic Processing, John Wiley and Sons, New York, (1995)
    3. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Part 2 Data Reviews-Selection 1: High-Alumina Ceramic, National Physical Laboratory, HMSO, London, (1987)
    4. C. Klein and C. S. Hurlbut, Manual of Mineralogy, New York :Wiley, (1993)
    5. M. F. Ashby, “A First Report on Sintering Diagrams,” Acta Metal., 22, 275-289, (1974)
    6. R. L. Coble, “Sintering Crystalline Solids: II, Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799, (1961)
    7. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley and Sons, New York, (1975)
    8. P. L. Chen and I. W. Chen, “Sintering of Fine Oxide Powders: Ⅱ, Sintering Mechanisms,” J. Am. Ceram. Soc., 80[3] 637-645, (1997)
    9. G. L. Messing and M. Kumagai, “Low Temperature Sintering of 脉-Alumina-Seeded Boehimite Gel,” J. Am. Ceram. Soc., 73[10] 88-91, (1994)
    10. T. S. Yeh and M. D. Sacks, “Low Temperature Sintering of Aluminum Oxide,” J, Am, Ceram. Soc., 71[10] 841-844, (1988)
    11. R. J. Brook, High Tech. Ceramics: Proceedings of The World Congress on High Tech Ceramics, Ed. By P. Vincenzini, Amsterdam, 757-761, (1987)
    12. R. D. Bagley, I. B. Cutler, and D. L. Johnson, “Effect of TiO2 on Initial Sintering of Al2O3,” J. Am. Ceram. Soc., 53[3] 136-141, (1970)
    13. E. R. Winkler, J. F. Sarver, and I. B. Cutler, “Solid Solution of Titanium Dioxide in Aluminum Oxide,” J. Am. Ceram. Soc., 49[12] 634-637, (1966)
    14. K. Hamano, C. S. Hwang, Z. E. Nakagawa, and Y. Ohya, “Effects of TiO2 on Sintering of Alumina Ceramics,” 窯協, 94[5] 505-511, (1986)
    15. C. S. Hwang, Z. E. Nakagawa, and K. Hamano, “Microstructures and Mechanical Properties of TiO2 Added Alumina Ceramics,” 窯協, 94[8] 761-766, (1986)
    16. C. S. Hwang, Z. E. Nakagawa, and K. Hamano, “Microstructures and Mechalical Properties of TiO2-Doped Alumina Ceramics Owing to Decomposition of Formed Al2TiO5,” J. Ceram. Soc. Jap. 102[3] 252-257, (1994)
    17. L. Miller, A. Avishai, and W. D. Kaplan, “Solubility Limit of MgO in Al2O3 at 1600℃,” J. Am. Ceram. Soc., 89[1] 350-353, (2006)
    18. S. K. Roy and R. L. Coble, “Solubilities of Magnesia, Titania and Magnesium Titanate in Aluminum Oxide,” J. Am. Ceram. Soc., 5[1] 1-6, (1968)
    19. P. J. Jorgensen and J. H. Westbrook, “Role of Solute Segregation at Grain Boundaries During Final-Stage Sintering of Alumina,” J. Am. Ceram. Soc., 47[7] 332-338, (1964)
    20. K. A. Berry and M. P. Harmer, “Effect of MgO Solute on Microstructure Development in Al2O3,” J. Am. Ceram. Soc., 69[2] 143-149, (1986)
    21. N. H. Shaw and R. J. Brook, “Structure and Grain Coarsening During the Sintering of Alumina,” J. Am. Ceram. Soc., 69[2] 107-110, (1986)
    22. P. Gruffel, P. Carry,and A. Mocellin, Science of Ceramics, Ed. By D. Taylor, UK :The Institute of Ceramics, (1988)
    23. Y. Ikuma and R. S. Gordon, “Enhancement of the Diffusional Creep of Polycrystalline Al2O3 by Simultaneous Doping with Manganese and Titanium,” J. Mater. Sci., 17, 2961-2967, (1982)
    24. J. Cho, M. P. Harmer, H. M. Chan, J. M. Rickman, and A. M. Thompson, “Effect of Y and La on the Tensile Creep Behavior of Aluminum Oxide,” J. Am. Ceram. Soc., 80[4] 1013-1017, (1997)
    25. S. Lartigue, C. Carry, and L. Priester, “Grain Boundaries in High Temperature Denformation of Yttria and Magnesia Co-doped Alumina,” J. Phys. Paris, C1, 51, 985-990, (1990)
    26. A. G. Robertson, D. S. Wilkinson, and C. H. Caceres, “Creep and Creep Fracture in Hot-Pressed Alumina,” J. Am. Ceram. Soc., 74[5] 915-921, (1991)
    27. F. Wakai, T. Iga, and T. Nagano, “Effect of Dispersion of ZrO2 Particles on Creep of Fine-Grained Alumina,” J. Am. Ceram. Soc., 74[9] 2258-2262, (1988)
    28. J. D. French, J. Zhao, M. P. Harmer, H. M. Chan, and G. A. Miller, “Creep of Duplex Microstructures,” J. Am. Ceram. Soc., 77[11] 2857-2865, (1994)
    29. Y. Z. Li, C. Wang, H. M. Chan, J. M. Rickman, and M. P. Harmer, “Codoping of Alumina to Enhance Creep Resistance,” J. Am. Ceram. Soc., 82[6] 1497-1504, (1999)
    30. H. Erkalfa, Z. Misirli, and T. Baykara, “The Effect of TiO2 and MnO2 on Densification and Microstructural Development of Alumina,” Ceram. Inter., 34, 81-90, (1998)
    31. T. J. Davies, A. A. Ogwu, N. Ridley, and Z. C. Wang, “Superplasticity in Ceramic Materials–I. The Observation of a “Superplastic Partition” in Ceramics,” Acta Mater., 44[6] 2373-2382, (1996)
    32. Z. C. Wang, T. J. Davies, N. Ridley, and A. A. Ogwu, “Superplasticity of Ceramic Materials–II. Effect of Initial Porosity and Doping on The Superplastic Behaviour of Alumina,” Acta Mater., 44[11] 4301-4309, (1996)
    33. J. Zhao and M. P. Harmer, “Sintering of Ultra-High-Purity Alumina Doped Simultaneously with MgO and FeO,” J. Am. Ceram. Soc., 70 [12] 860-866, (1987)
    34. L. A. Xue and I. W. Chen, “Superplastic Alumina at Temperautres below 1300℃ Using Charge-Compensating Dopants,” J. Am. Ceram. Soc., 79[1] 233-238, (1996)
    35. K. L. Gavrilov, S. J. Bennison, K. R. Mikeska, J. M. Chabala, and R. Levi-Setti, “Silca and Magnesia Dopant Distributions in Alumina by High-Resolution Scanning Secondary Ion Mass Spectrometry,” J. Am. Ceram. Soc., 82[4] 1001-1008, (1999)
    36. K. L. Gavrilov, S. J. Bennison, K. R. Mikeska, and R. L. Setti, “Role of Magnesia and Silica in Alumina Microstructure Evolution,” J. Mater. Sci., 38, 3965-3972, (2003)

    下載圖示 校內:立即公開
    校外:2007-07-10公開
    QR CODE