簡易檢索 / 詳目顯示

研究生: 林明杰
Lin, Ming-Chieh
論文名稱: 以低壓化學氣相沉積法合成硫化錳奈米線與其電子傳輸性質研究
Fabrication and Electron Transport Properties of Manganese Sulfide Nanowires with Low-Pressure Chemical Vapor Deposition
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 129
中文關鍵詞: 硫化錳CVD碳摻雜硫化錳電阻率尼爾溫度超電容
外文關鍵詞: CVD, sulfide, carbon doped, nanowires, resistivities, supercapacitors
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用真空爐管,以化學氣相沉積法在低壓下合成硫化錳奈米線,
    使用FE-SEM 分析觀察其形貌,比較包含溫度、壓力、氣體流量及前驅
    物克數等變因,得出在基板溫度850℃、持溫2 小時及載流氣體Ar 60sccm條件下有最佳的奈米線形貌,高寬比約2000,以XRD、HR-TEM、EDS及繞射圖譜等分析其晶相,得知α-MnS、β-MnS 及MnS2 同時存在。本實驗使用CH4 作為碳元素來源進行碳摻雜實驗,並經由STEM line scan 證實。性質量測著重電性、磁性、光學性質及超電容元件,在常溫下,四點探針模式量測MnS 奈米線電阻率為9.72x10-6 Ω-m,C-doped MnS 奈米線電阻率為5.21x10-6 Ω-m,兩點探針模式下電阻率則可達4.2x10-7 Ω-m,Cdoped MnS 奈米線在電性上得到顯著的提升,磁性質則表現出室溫超順磁性,低溫轉變為反鐵磁性的現象,尼爾溫度(TN)為24K,有效磁矩(μeff)則為4.52μB,兩者數值相比塊材均有顯著下降,透過光致發光光譜儀得到在1.6eV 處有寬廣且強的峰值。超電容元件使用PVA/KOH gel 作為電解質合成全固態對稱式元件,C-V 曲線呈現明顯的電容行為,比電容(Cs)值最高可達593.07 F g-1,特色明顯的性能顯見MnS 多元且具發展潛力的應用。

    We report a simple and economical approach for fabrication of single-crystalline MnS nanowires and carbon-doped MnS nanowires uniformly sheathed with amorphous silicon oxide via low-pressure chemical vapor deposition technique (LP-CVD) used methane gas as a precursor in a single-step route. The growth mechanism followed Au-Ni catalytic vapor-liquid-solid (VLS) process with Si (100) as substrate. We modified the processing parameters to obtain single crystalline nanowires with an improved aspect ratio. The nanowires possess good morphology and core-shell structure with high aspect ratio around 2000. As-synthesized MnS NWs were characterized by advanced spectroscopy and electron microscopy techniques, including XRD, SEM, HR-TEM, EDS, and SAED. To analyze electrical and electrochemical properties, we utilized a four-point probe system to measure resistivities for a single nanowire and obtained the resistivities of MnS NW and C-doped MnS NW are 9.72x10-6 Ω-m and 5.2x10-6 Ω-m, respectively. The magnetic properties analysis shows that MnS NW proceeds a transformation from paramagnetic to antiferromagnetic at low temperature. The Néel temperature we got is 24K and effective magnetic moment is 4.52μB, which are both lower than bulk MnS. As a supercapacitor material, we assembled asymmetrical all-solid-state supercapacitor, which exhibits capacitor behavior with the specific capacitance of 593.07 F g-1. These remarkable results make these materials promising for practical applications in nanodevices and energy-related fields.

    摘要. ............I Extend Abstract...........II 致謝............XXIV 總目錄............XXV 圖目錄..........XXVIII 表目錄............XXXI 一、 前言...........1 二、 文獻回顧...........3 2.1奈米尺度效應...........3 2.1-1 小尺寸效應(Small Scale Effect) ......4 2.1-2 表面效應(Surface efect) ........4 2.1-3 量子尺寸效應(Quantum Scale Effect) ......5 2.1-4 巨觀量子穿隧效應(Macroscopic Quantum Tunneling Effect)..6 2.2 過渡金屬硫族化合物.........7 2.3 硫化錳性質及其結構.........8 2.4 硫化錳(MnS)一維結構的合成方式......10 2.4-1 水熱法(Solvothermal method) .......10 2.4-2 化學氣相沉積法(Chemical Vapor Deposition, CVD)...14 2.5 硫化錳奈米線特性..........16 2.5-1 電學性質(Electrical proteries) ........16 2.5-2 磁性(Magnetic proterties) .......17 2.5-3 光學性質(Optical proteries) ........17 三、 實驗方法..........19 3.1 基板材料(Substrates) ..........19 3.2 使用藥品...........19 3.3 實驗設備. ..........20 3.3-1 氣氛退火系統(Atmosphere Annealing System)....20 3.3-3 電子束蒸鍍系統(E-beam Evaporation System)....21 3.3-4 雙束型聚焦離子束系統(Dual-Beam Focused Ion Beam)....23 3.4 實驗流程...........25 3.4-1 基材清洗..........25 3.4-2 基板催化劑處理. .........25 3.4-3 硫化錳(MnS)奈米線的製備.......26 3.4-4 C-doped實驗..........31 3.4-5 電性量測微元件製備.........33 3.4-5 簡易超電容元件製備.........35 3.5 特性量測與性質分析........38 3.5-1 X光繞射分析儀(X-ray Diffractometer, XRD)......38 3.5-2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)...40 3.5-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)..42 3.5-4 超導量子干涉儀(SQUID)........45 3.5-5 微光激發螢光光譜儀(Micro-PL Spectrometer)....47 3.5-6 電性量測系統 (Multi-probes Electronics Measurement System)..47 四、 結果與討論...........49 4.1 實驗架構...........49 4.2 成長參數對於奈米線形貌的影響.......52 4.2-1 溫度對於奈米線形貌的影響........52 4.2-2 持溫時間對於形貌的影響.......56 4.2-3 壓力對於形貌的影響.........62 4.2-4 前驅物量的影響.........67 4.2-5 氣體流量的影響.........71 4.2-6 最佳參數及成長機制.........74 4.2-7 相的鑑定..........78 4.2-8 C-doped MnS 奈米線分析.........90 4.3 性質量測...........93 4.3-1 電性量測..........93 4.3-2 磁性量測..........105 4.3-3 光致發光性質量測........111 4.3-4 簡易超電容元件性能量測.......114 五、結論...........122 六、參考文獻...........124

    1. Kudo, R., Invited talk in the University of Tokyo. 1962.
    2. Zhu, Y.C., Y. Bando, and L.W. Yin, Design and Fabrication of BN‐Sheathed ZnS Nanoarchitectures. Advanced Materials, 2004. 16(4): p. 331-334.
    3. Beltran-Huarac, J., et al., Single-crystal gamma-MnS nanowires conformally coated with carbon. ACS Appl Mater Interfaces, 2014. 6(2): p. 1180-6.
    4. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    5. Yin, Z., et al., Single-layer MoS2 phototransistors. ACS nano, 2011. 6(1): p. 74-80.
    6. Liu, K.-K., et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters, 2012. 12(3): p. 1538-1544.
    7. Danielian, A. and K. Stevens, Exchange interactions in the polymorphic forms of MnS. Proceedings of the Physical Society, 1961. 77(1): p. 124.
    8. Tappero, R., P. D'Arco, and A. Lichanot, Electronic structure of α-MnS (alabandite): an ab initio study. Chemical physics letters, 1997. 273(1-2): p. 83-90.
    9. Hobbs, D. and J. Hafner, Magnetism and magneto-structural effects in transition-metal sulphides. Journal of Physics: Condensed Matter, 1999. 11(42): p. 8197.
    10. Kravtsova, A., et al., Electronic structure of M S (M= C a, M g, F e, M n): X-ray absorption analysis. Physical Review B, 2004. 69(13): p. 134109.
    11. Viswanath, R., et al., Luminescence properties of blue–red emitting multilayer coated single structure ZnS/MnS/ZnS nanocomposites. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 125: p. 222-227.
    12. Zhang, X.V., et al., Mineral-assisted pathways in prebiotic synthesis: Photoelectrochemical reduction of carbon (+ IV) by manganese sulfide. Journal of the American Chemical Society, 2004. 126(36): p. 11247-11253.
    13. Chilton, H.M., et al., Use of a paramagnetic substance, colloidal manganese sulfide, as an NMR contrast material in rats. Journal of nuclear medicine, 1984. 25(5): p. 604-607.
    14. Lu, J., et al., Metastable MnS crystallites through solvothermal synthesis. Chemistry of materials, 2001. 13(6): p. 2169-2172.
    15. Kan, S., I. Felner, and U. Banin, Synthesis, characterization, and magnetic properties of α‐MnS nanocrystals. Israel Journal of Chemistry, 2001. 41(1): p. 55-62.
    16. G. Papp. History of Minerals, Rocks and Fossil resins Discovered in the Carpathian Region.: (Studia Naturalia, Volume 15). Budapest, Hungary (Hungarian Natural History Museum). 2004. x + 215 pp. Price €16.00 (£12.35) ISBN 963-7093-85-0. Mineralogical Magazine, 2006. 70(5): p. 607-608.
    17. Ma, C., J.R. Beckett, and G.R. Rossman, Browneite, MnS, a new sphalerite-group mineral from the Zakłodzie meteorite. American Mineralogist, 2012. 97(11-12): p. 2056-2059.
    18. Ferretti, A.M., S. Mondini, and A. Ponti, Manganese Sulfide (MnS) Nanocrystals: Synthesis, Properties, and Applications, in Advances in Colloid Science. 2016.
    19. Xia, Y., et al., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 2003. 15(5): p. 353-389.
    20. Deng, Z., et al., High-quality manganese-doped zinc sulfide quantum rods with tunable dual-color and multiphoton emissions. Journal of the American Chemical Society, 2011. 133(14): p. 5389-5396.
    21. Duan, X., et al., Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001. 409(6816): p. 66.
    22. Pan, Z.W., Z.R. Dai, and Z.L. Wang, Nanobelts of semiconducting oxides. Science, 2001. 291(5510): p. 1947-1949.
    23. Chopra, N.G., et al., Boron nitride nanotubes. Science, 1995. 269(5226): p. 966-967.
    24. Dekun, m., S. Huang, and L. Zhang, One-pot synthesis and magnetic, electrical properties of single-crystalline α-MnS nanobelts. Vol. 462. 2008. 96-99.
    25. Zhang, C., et al., Hydrothermal synthesis of oriented MnS nanorods on anodized aluminum oxide template. Materials Letters, 2008. 62(2): p. 246-248.
    26. Xu, G., Y.L. Zhu, and X.L. Ma, Cu2S nanowires and MnS/Cu2S nanojunctions derived from γ-MnS nanowires via selective cation-exchange reaction. physica status solidi (a), 2011. 208(1): p. 123-128.
    27. Ge, J. and Y. Li, Controllable CVD route to CoS and MnS single-crystal nanowires. Chemical Communications, 2003(19): p. 2498-2499.
    28. Ge, J.P., et al., A General Atmospheric Pressure Chemical Vapor Deposition Synthesis and Crystallographic Study of Transition‐Metal Sulfide One‐Dimensional Nanostructures. Chemistry-A European Journal, 2004. 10(14): p. 3525-3530.
    29. Ma, D., S. Huang, and L. Zhang, One-pot synthesis and magnetic, electrical properties of single-crystalline α-MnS nanobelts. Chemical Physics Letters, 2008. 462(1-3): p. 96-99.
    30. Zhang, N., et al., Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries. Materials Chemistry and Physics, 2008. 111(1): p. 13-16.
    31. Ha, D.-H., et al., A General Method for High-Performance Li-Ion Battery Electrodes from Colloidal Nanoparticles without the Introduction of Binders or Conductive-Carbon Additives: The Cases of MnS, Cu2–x S, and Ge. ACS applied materials & interfaces, 2015. 7(45): p. 25053-25060.
    32. Li, X., et al., Fabrication of γ-MnS/rGO composite by facile one-pot solvothermal approach for supercapacitor applications. Journal of Power Sources, 2015. 282: p. 194-201.
    33. Tang, Y., et al., Synthesis of graphene oxide anchored porous manganese sulfide nanocrystals via the nanoscale Kirkendall effect for supercapacitors. Journal of Materials Chemistry A, 2015. 3(24): p. 12913-12919.
    34. Corliss, L., N. Elliott, and J. Hastings, Magnetic structures of the polymorphic forms of manganous sulfide. Physical Review, 1956. 104(4): p. 924.
    35. Meng, J., et al., Phase transfer preparation of ultrasmall MnS nanocrystals with a high performance MRI contrast agent. RSC Advances, 2016. 6(9): p. 6878-6887.
    36. Yang, X., et al., Size-controlled synthesis of bifunctional magnetic and ultraviolet optical rock-salt MnS nanocube superlattices. Langmuir, 2012. 28(51): p. 17811-17816.
    37. Lei, S., et al., Solvothermal Synthesis of Metastable γ‐MnS Hollow Spheres and Control of Their Phase. European journal of inorganic chemistry, 2005. 2005(20): p. 4124-4128.
    38. Wang, S., et al., Synthesis of metastable γ-manganese sulfide crystallites by microwave irradiation. Materials chemistry and physics, 2005. 91(2-3): p. 298-300.
    39. Li, Y., et al., Fabrication and photoluminescence of SiO2-sheathed semiconducting nanowires: the case of ZnS/SiO2. Nanotechnology, 2005. 16(4): p. 501.
    40. Ortaboy, S., et al., MnOx-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors. Energy & Environmental Science, 2017. 10(6): p. 1505-1516.
    41. Pujari, R.B., et al., Synthesis of MnS microfibers for high performance flexible supercapacitors. Materials & Design, 2016. 108: p. 510-517.
    42. Wang, G., et al., Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater, 2014. 26(17): p. 2676-82, 2615.
    43. Chen, T., et al., All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Sci Rep, 2016. 6: p. 23289.
    44. Ghosh, D., M. Mandal, and C.K. Das, Solid State Flexible Asymmetric Supercapacitor Based on Carbon Fiber Supported Hierarchical Co(OH)xCO3 and Ni(OH)2. Langmuir, 2015. 31(28): p. 7835-43.
    45. Lu, X., et al., Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett, 2012. 12(10): p. 5376-81.
    46. Kim, C.-C., et al., X-ray synthesis of nickel–gold composite nanoparticles. Materials Chemistry and Physics, 2006. 100(2): p. 292-295.
    47. Nikolaev, S.A., et al., Catalytic Activity of Gold-Containing Nanoclusters in Carbon Tetrachloride Addition to Multiple Bonds. Kinetics and Catalysis, 2005. 46(6): p. 867-872.
    48. V. Smirnov, V., et al., Adsorption and catalytic conversion of hydrocarbons on nanosized gold particles immobilized on alumina. Vol. 54. 2005. 2286-2289.
    49. Suo, Z., et al., Influence of Au promoter on hydrodesulfurization activity of thiophene over sulfided Au–Ni/SiO2 bimetallic catalysts. Catalysis Communications, 2009. 10(8): p. 1174-1177.
    50. Molenbroek, A.M., J.K. Nørskov, and B.S. Clausen, Structure and Reactivity of Ni−Au Nanoparticle Catalysts. The Journal of Physical Chemistry B, 2001. 105(23): p. 5450-5458.
    51. Ogando Arregui, E., M. Caro, and A. Caro, Numerical evaluation of the exact phase diagram of an empirical Hamiltonian: Embedded atom model for the Au-Ni system. Physical Review B, 2002. 66(5).
    52. Dhandayuthapani, T., et al., γ-MnS films with 3D microarchitectures: comprehensive study of the synthesis, microstructural, optical and magnetic properties. CrystEngComm, 2018. 20(5): p. 578-589.
    53. Gümüş, C., C. Ulutaş, and Y. Ufuktepe, Optical and structural properties of manganese sulfide thin films. Optical Materials, 2007. 29(9): p. 1183-1187.
    54. Li, Q., et al., Synthesis of TiO2@C core–shell nanostructures with various crystal structures by hydrothermal and postheat treatments. Journal of Materials Research, 2012. 28(03): p. 449-453.
    55. Yang, X., et al., Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde. Journal of Catalysis, 2007. 252(2): p. 296-302.
    56. Irie, H., Y. Watanabe, and K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 2003. 32(8): p. 772-773.
    57. Choi, Y., T. Umebayashi, and M. Yoshikawa, Fabrication and characterization of C-doped anatase TiO2 photocatalysts. Journal of Materials Science, 2004. 39(5): p. 1837-1839.
    58. Lee, J.-Y., J. Park, and J.-H. Cho, Electronic properties of N-and C-doped Ti O 2. Applied Physics Letters, 2005. 87(1): p. 011904.
    59. Chen, X. and C. Burda, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008. 130(15): p. 5018-5019.
    60. Reddy, K.M., et al., S-, N-and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 2005. 178(11): p. 3352-3358.
    61. Zhang, M., et al., The preparation and characterization of olivine LiFePO4/C doped with MoO3 by a solution method. Solid State Ionics, 2006. 177(37-38): p. 3309-3314.
    62. Zhao, J.-X. and B.-Q. Dai, DFT studies of electro-conductivity of carbon-doped boron nitride nanotube. Materials chemistry and physics, 2004. 88(2-3): p. 244-249.
    63. Yan, C., et al., Template‐Based Engineering of Carbon‐Doped Co3O4 Hollow Nanofibers as Anode Materials for Lithium‐Ion Batteries. Advanced Functional Materials, 2016. 26(9): p. 1428-1436.
    64. Beltran-Huarac, J., et al., Highly-crystalline γ-MnS nanosaws. RSC Adv., 2014. 4(72): p. 38103-38110.
    65. Lee, S.M., J.K. Lee, and Y.C. Kang, Electrochemical Properties of Hollow‐Structured MnS–Carbon Nanocomposite Powders Prepared by a One‐Pot Spray Pyrolysis Process. Chemistry–An Asian Journal, 2014. 9(2): p. 590-595.
    66. Tang, Y., T. Chen, and S. Yu, Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances. Chemical Communications, 2015. 51(43): p. 9018-9021.
    67. Huffman, D.R. and R.L. Wild, Specific heat of MnS through the Néel temperature. Physical Review, 1966. 148(2): p. 526.
    68. Singh, H., et al., Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6. Journal of Applied Physics, 2014. 116(21): p. 214106.
    69. Electrical and Magnetic Properties of Sulfides. Reviews in Mineralogy and Geochemistry, 2006. 61(1): p. 127-180.
    70. Puglisi, A., et al., Monodisperse Octahedral α-MnS and MnO Nanoparticles by the Decomposition of Manganese Oleate in the Presence of Sulfur. Chemistry of Materials, 2010. 22(9): p. 2804-2813.
    71. An, C., et al., Hydrothermal preparation of α-MnS nanorods from elements. Journal of Crystal Growth, 2003. 252(4): p. 575-580.
    72. Beltran-Huarac, J., B. Weiner, and G. Morell, Nanofabrication Using Nanomaterials, ISBN (e-Book) 978-1-910086-15-5. 2016.
    73. Zhang, L.L. and X. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531.
    74. Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano letters, 2010. 10(12): p. 4863-4868.
    75. Wang, Y., et al., Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 2009. 113(30): p. 13103-13107.
    76. Frackowiak, E., Carbon materials for supercapacitor application. Physical chemistry chemical physics, 2007. 9(15): p. 1774-1785.
    77. Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011. 196(1): p. 1-12.
    78. Zhang, K., et al., Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 2010. 22(4): p. 1392-1401.
    79. Bao, S.-J., et al., Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. Journal of Power Sources, 2008. 180(1): p. 676-681.
    80. Tao, F., et al., Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochemistry Communications, 2007. 9(6): p. 1282-1287.
    81. Chou, S.-W. and J.-Y. Lin, Cathodic deposition of flaky nickel sulfide nanostructure as an electroactive material for high-performance supercapacitors. Journal of The Electrochemical Society, 2013. 160(4): p. D178-D182.
    82. Zhu, T., et al., Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. Rsc Advances, 2011. 1(3): p. 397-400.
    83. Wang, A., et al., Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Applied Surface Science, 2013. 282: p. 704-708.
    84. Chen, W., C. Xia, and H.N. Alshareef, One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS nano, 2014. 8(9): p. 9531-9541.
    85. Yan, J., et al., Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon, 2010. 48(13): p. 3825-3833.
    86. Dubal, D., et al., A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Applied Surface Science, 2010. 256(14): p. 4411-4416.
    87. Qie, L., et al., Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy & Environmental Science, 2013. 6(8).

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE