研究生: |
宋狄宗 Sung, Ti-Tsung |
---|---|
論文名稱: |
以現地呈層土壤淨化系統直接循環改善成功水庫水質之研究 A Pilot-Study on Multi-Soil-Layering System for Direct Purification of Water Quality at Chengkung Reservoir, Penghu, Taiwan |
指導教授: |
張智華
Chang, Chih-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | MSL 、BioNET 、MSL模場之規劃設計 、水質試驗 、處理成本 |
外文關鍵詞: | MSL, BioNET, Pilot Plant planning and design, Water Quality Analysis, cost analysis |
相關次數: | 點閱:122 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水庫優養化係因水中氮、磷營養物質過量所引起,造成藻類與水中有機物濃度增高,影響飲用水安全並提高原水處理成本。我國澎湖及其他離島地區飲用水原水主要仰賴水庫供應,因澎湖少雨、蒸發量大、水庫優養問題嚴重,再加上民生及遊客用水快速成長,水庫水質與水量均已不符所需,近年來飲用水逐漸以海淡水為主。不過,海淡水成本高出水庫水數倍,水庫水即使在豐水期水量充足狀態下又因水質不好需增加加藥量且提高消毒副產物風險,改善水庫優養不僅可降低用水成本,還可提升用水安全。
減輕水體優養化的根本方法不外乎是阻絕營養物質流入水庫,或降低水庫內營養鹽濃度。在阻絕營養物質流入水庫方面,澎湖多年來推動非點源污染逕流廢水控制及污水截流入海,對水庫水質無明顯改善。在降低水庫內營養鹽濃度方面,除定期清淤疏浚外,尚未有具體作法,其原因之一為目前尚未有可靠、能直接循環並有效處理水庫低氮、磷濃度之現地水質淨化方法。
本研究以澎湖成功水庫為例,試驗以呈層土壤水質淨化系統(multi-soil-layering system, MSL)直接循環庫內水來探討低濃度進流水質之去除效果。MSL是源自日本的一種土壤滲透改良工法,主要是將土壤、有機質、碳粉、鐵等材料包覆於土工包,並且藉由透水層(沸石、礫石等)與混合土塊層(土工包)呈層堆疊使該系統同時擁有均勻與不均勻水流來達到有效的去除效果。相較傳統土壤處理工法,MSL具有廣進流濃度範圍、高單位面積負荷率、較不容阻塞等優點。有別於在實驗室建置小型實驗系統,本研究於澎湖成功水庫現地進行模場操作,處理實際水庫原水以評估MSL對澎湖成功水庫水質直接循環之改善效果與淨水成本。在MSL模場規劃設計部分區分五大項:(1)水質環境狀況、(2)廠址點位選擇、(3)實驗操作流程規劃、(4)試驗槽內部材料配置、(5)土工包內部材料選用。規劃設計內容包含事前水質觀測、場址地點評估、實驗流程規劃及材料選用與配置。
本研究MSL模場最大處理量40 CMD,以不同之土工包材料配比及透水層共分4槽(A-D槽),每槽可獨立操作,長寬高皆為2m、2.5m、2m,槽體內有8層土工包層含136個土工包。系統先自水庫抽取原水,經BioNet前處理(防止MSL阻塞),最後進入MSL單元。在一年的水質試驗中,夏秋季TB總去除率為82%,SS總去除率為50%,TOC總去除率為65%,TP總去除率為45%,NH3-N總去除率為69%,BOD總去除率為47%,COD總去除率為27%;冬春季TB總去除率為85%,SS總去除率為75%,TOC總去除率為58%,TP總去除率為62%,NH3-N總去除率為73%,BOD總去除率為71%,COD總去除率為8%。
本研究MSL試驗模場建造成本為350萬元、模場面積為20 m2、單位建造成本為17.5萬元/m2。營運費用每年約5萬元,主要為抽水馬達及鼓風機之電力費用,目前處理水量約為40 CMD,估計本研究MSL模場處理成本為3.4元/CMD (原水),加計水庫原水處理成本後約為13.4元,其與目前澎湖地區海水淡化廠處理成本30-40元/CMD相比低上許多。不過,即便MSL的興建成本與造水成本都遠低於海淡廠,只要成功水庫水量不增加,無論用哪一種方法改善成功水庫的水質,都不會降低澎湖對海淡水的依賴,以及自來水產水成本。若採用MSL實場直接循環改善成功水庫水質,預期可顯著改善其優養程度,並在夏秋季水位較高時有機會符合甲類TP水質標準。對自來水公司而言,可因水庫TOC改善而降低加藥成本,使飲用水口感好且消毒副產物風險降低。
This study is aimed at using multi-soil-layering system(MSL) directly purify Water Quality of Chengkung reservoir at Penghu, Taiwan.In the experiment ,we built four different pilot plants with different material ratio and they are combined with multi-soil-layering system (MSL) and BioNET treatment technology. The contents of this study include discussions on the pre-construction survey of Penghu Chenggong Reservoir, the planning and design of the pilot plant, water quality analysis and cost analysis. In terms of water quality analysis, the pollution reduction efficiency of the MSL system for Chengkung reservoir in summer and fall is: TP 45%, TOC 65%, NH3-N 69%, BOD 47%, and SS 50%.In winter and spring:TP 62%, TOC 58%, NH3-N 73%, BOD 71%, and SS 75%.The cost of water treatmeant is much lower by using MSL than seawater desalination .
Attanandana, T., B. Saitthiti, S. Thongpae, S. Kritapirom, S. Luanmanee and T. Wakatsuki (2000). "Multi-media-layering system for food service wastewater treatment." Ecological Engineering 15(1-2): 133-138.
Brookes, J., Burch, M., Hipsey, M., Linden, L., Antenucci, J., Steffensen, D., Hobson, P., Thorne, O., Lewis, D., Rinck-Pfeiffer, S., Kaeding, U. and Ramussen, P. (2008). A Practical Guide to Reservoir Management, Water Quality Research Australia Research Report 67, Adelaide, Australia.
Barwal, A. and R. Chaudhary (2014). "To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review." Reviews in Environmental Science and Bio/Technology 13(3): 285-299.
Chang, C.H., Harrison, J.F. and Huang, Y.C. (2015). Modeling Typhoon-Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan. Water-Sui 7: 6910-6930.
Chen, W., Westerhoff, P., Leenheer, J.A. and Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology 37: 5701-5710.
Clary, J., Jones, J., Leisenring, M., Hobson, P. and Strecker, E. (2017). 2016 Summary Statistics, International Stormwater BMP Database.
Calderón, K., J. Martín-Pascual, J. M. Poyatos, B. Rodelas, A. González-Martínez and J. González-López (2012). "Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions." Bioresource technology 121: 119-126.
Chen, X., K. Sato, T. Wakatsuki and T. Masunaga (2007). "Effect of structural difference on wastewater treatment efficiency in multi-soil-layering systems: Relationship between soil mixture block size and removal efficiency of selected contaminants." Soil Science and Plant Nutrition 53(2): 206-214.
Guan, Y. D., X. Chen, S. Zhang and A. C. Luo (2012). "Performance of multi-soil-layering system (MSL) treating leachate from rural unsanitary landfills." Science of the Total Environment 420: 183-190.
Guo, J. Y., Y. L. Zhou, S. L. Jiang and C. Chen (2019). "Feasibility investigation of a multi soil layering bioreactor for domestic wastewater treatment." Environmental Technology 40(17): 2317-2324.
Guo, J. Y., Y. L. Zhou, Y. J. Yang, C. Chen and J. J. Xu (2018). "Effects of Hydraulic Loading Rate on Nutrients Removal from Anaerobically Digested Swine Wastewater by Multi Soil Layering Treatment Bioreactor." International Journal of Environmental Research and Public Health 15(12).
Greeson, P.E. (1969). Lake Eutrophication–a Natural Process. Journal of American Water Resources Association 5: 16-30.
Guan, Y.D., Xu, D.F., Chen, X., Luo, A.C., Fang, H. and Song, Y.Z. (2014). Flow Patterns of Multi-Soil-Layering Systems. Desalination and Water Treatment 52: 4165-4169.
Hagedorn, C., E. Mc Coy and T. Rahe (1981). "The potential for ground water contamination from septic effluents." Journal of Environmental Quality 10(1): 1-8.
Hem, L. J., B. Rusten and H. Ødegaard (1994). "Nitrification in a moving bed biofilm reactor." Water Research 28(6): 1425-1433.
Ho, C.C. and Wang, P.H. (2015). Efficiency of a Multi-Soil-Layering System on Wastewater Treatment Using Environment-Friendly Filter Materials. International Journal of Environmental Research and Public Health 12: 3362-3380.
Hobson, P., Dickson, S., Burch, M., Thorne, O., Tsymbal, L., House, J., Brookes, J., Chang, D., Kao, S.-C., Lin, T.-F., Bierlein, K. and Little, J. (2012). Alternative and Innovative Methods for Source Water Management of Algae and Cyanobacteria, Australian Water Quality Centre, Adelaide, Australia.
Hudson, N., Baker, A. and Reynolds, D. (2007). Fluorescence Analysis of Dissolved Organic Matter in Natural, Waste and Polluted Waters—a Review. River Research and Applications 23: 631-649.
Imai, A., Fukushima, T., Matsushige, K. and Kim, Y.H. (2001). Fractionation and Characterization of Dissolved Organic Matter in a Shallow Eutrophic Lake, Its Inflowing Rivers, and Other Organic Matter Sources. Water Res 35: 4019-4028.
Luanmanee, S., P. Boonsook, T. Attanandana, B. Saitthiti, C. Panichajakul and T. Wakatsuki (2002). "Effect of intermittent aeration regulation of a multi-soil-layering system on domestic wastewater treatment in Thailand." Ecological Engineering 18(4): 415-428.
Luo, Y., Q. Jiang, H. H. Ngo, L. D. Nghiem, F. I. Hai, W. E. Price, J. Wang and W. Guo (2015). "Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor–membrane bioreactor system." Bioresource technology 191: 355-359.
Latrach, L., Ouazzani, N., Hejjaj, A., Mahi, M., Masunaga, T. and Mandi, L. (2018a). Two-Stage Vertical Flow Multi-Soil-Layering (Msl) Technology for Efficient Removal of Coliforms and Human Pathogens from Domestic Wastewater in Rural Areas under Arid Climate. International Journal of Hygiene and Environmental Health 221: 64-80.
Latrach, L., Ouazzani, N., Hejjaj, A., Zouhir, F., Mahi, M., Masunaga, T. and Mandi, L. (2018b). Optimization of Hydraulic Efficiency and Wastewater Treatment Performances Using a New Design of Vertical Flow Multi-Soil-Layering (Msl) Technology. Ecological Engineering 117: 140-152.
Lee, G.F., Jones, R.A. and Rast, W. In (Ed.)^(Eds.) The IJC/Cornell University Conference on Phosphorus Management Strategies for the Great Lakes, 1979.
Luanmanee, S., Attanandana, T., Masunaga, T. and Wakatsuki, T. (2001). The Efficiency of a Multi-Soil-Layering System on Domestic Wastewater Treatment During the Ninth and Tenth Years of Operation. Ecological Engineering 18: 185-199.
Luanmanee, S., Boonsook, P., Attanandana, T. and Wakatsuki, T. (2002). Effect of Organic Components and Aeration Regimes on the Efficiency of a Multi-Soil-Layering System for Domestic Wastewater Treatment. Soil Science and Plant Nutrition 48: 125-134.
Masunaga, T., Sato, K., Mori, J., Shirahama, M., Kudo, H. and Wakatsuki, T. (2007). Characteristics of Wastewater Treatment Using a Multi-Soil-Layering System in Relation to Wastewater Contamination Levels and Hydraulic Loading Rates. Soil Science and Plant Nutrition 53: 215-223.
Masunaga, T., Sato, K., Zennami, T., Fujii, S. and Wakatsuki, T. (2003). Direct Treatment of Polluted River Water by the Multi-Soil-Layering Method. Journal of Water and Environment Technology 1: 97-104.
Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed, L., Bhatnagar, A. and Sillanpaa, M. (2011). An Overview of the Methods Used in the Characterisation of Natural Organic Matter (Nom) in Relation to Drinking Water Treatment. Chemosphere 83: 1431-1442.
OSU. Agriculture Bmps, https://agbmps.osu.edu/, Last Access: 12/17.
Peiris, R.H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P.M. and Legge, R.L. (2010). Identifying Fouling Events in a Membrane-Based Drinking Water Treatment Process Using Principal Component Analysis of Fluorescence Excitation-Emission Matrices. Water Res 44: 185-194.
Rodgers, M., Mulqueen, J. and Healy, M.G. (2004). Surface Clogging in an Intermittent Stratified Sand Filter. Soil Sci Soc Am J 68: 1827-1832.
Rusten, B., B. Eikebrokk, Y. Ulgenes and E. Lygren (2006). "Design and operations of the Kaldnes moving bed biofilm reactors." Aquacultural engineering 34(3): 322-331.
Sanchez, N.P., Skeriotis, A.T. and Miller, C.M. (2013). Assessment of Dissolved Organic Matter Fluorescence Parafac Components before and after Coagulation-Filtration in a Full Scale Water Treatment Plant. Water Res 47: 1679-1690.
Sato, K., Iwashima, N., Wakatsuki, T. and Masunaga, T. (2011a). Clarification of Water Movement Properties in a Multi-Soil-Layering System. Soil Science and Plant Nutrition 57: 607-618.
Sato, K., Iwashima, N., Wakatsuki, T. and Masunaga, T. (2011b). Quantitative Evaluation of Treatment Processes and Mechanisms of Organic Matter, Phosphorus, and Nitrogen Removal in a Multi-Soil-Layering System. Soil Science and Plant Nutrition 57: 475-486.
Sato, K., Masunaga, T., Inada, K., Tanaka, T., Arai, Y., Unno, S. and Wakatsuki, T. (2005a). The Development of High Speed Treatment of Polluted River Water by the Multi-Soil-Layering Method : Examination of Various Materials and Structures. Japanese Journal of Soil Science and Plant Nutrition 76: 449-458.
Sato, K., Masunaga, T. and Wakatsuki, T. (2002). Treatment of Biogenic Wastewater by Multi-Soil-Layering Method: Effect of Various Positions of Aeration Using Small Model Systems. Journal of Japan Society on Water Environment 25: 234-241.
Sato, K., Masunaga, T. and Wakatsuki, T. (2005b). Characterization of Treatment Processes and Mechanisms of Cod, Phosphorus and Nitrogen Removal in a Multi-Soil-Layering System. Soil Science and Plant Nutrition 51: 213-221.
Sato, K., Masunaga, T. and Wakatsuki, T. (2005c). Water Movement Characteristics in a Multi-Soil-Layering System. Soil Science and Plant Nutrition 51: 75-82.
Sato, K., Wakatsuki, T., Iwashima, N. and Masunaga, T. (2019). Evaluation of Long-Term Wastewater Treatment Performances in Multi-Soil-Layering Systems in Small Rural Communities. Applied and Environmental Soil Science 2019.
Unno, S., Wakatsuki, T., Masunaga, T. and Iyota, K. (2003). Study on Direct Treatment of River by Multi-Soil-Layering Method and Its Characteristics of Water Purification. Doboku Gakkai Ronbunshu 2003: 121-129.
Wakatsuki, T., Esumi, H. and Omura, S. (1993). High-Performance and N-Removable and P-Removable on-Site Domestic Waste-Water Treatment System by Multi-Soil-Layering Method. Water Science and Technology 27: 31-40.
Watanabe, H., Asada, N., Kikuchi, K. and Nakagi, T. (2018). Demonstration Facility for Purification of Lake Kasumigaura Adopting Flocculation and Magnetic Separation System, In 17th World Lake Conference, Lake Kasumigaura, Ibaraki, Japan.
Yu, H.B., Song, Y.H., Tu, X., Du, E.D., Liu, R.X. and Peng, J.F. (2013). Assessing Removal Efficiency of Dissolved Organic Matter in Wastewater Treatment Using Fluorescence Excitation Emission Matrices with Parallel Factor Analysis and Second Derivative Synchronous Fluorescence. Bioresource Technology 144: 595-601.
Wang, H., S. Jin, J. Li, J. Dong, L. Zhang, W. Chen and X. Ge (2014). "Phosphorus characteristics with controlled nitrogen in fertile soils in protected vegetable field." Journal of Agricultural Resources and Environment 31(3): 253-258.
陳宜婷 (2019). "台灣水庫水質及其管理指標之評析." 淡江大學水資源及環境工程學系碩士班學位論文: 1-132.
賴美倫 (2009). "優養化水質變遷模擬." 朝陽科技大學環境工程與管理系學位論文(2009 年): 1-97.
劉怡妏. (2014). "以生物單元 BioNET 處理飲用水原水中氨氮之模廠研究. "成功
大學環境工程學系學位論文: 1-105.
稲森悠平, 稲森隆平 and 孔海南 (2003). 土壌浄化, In エコテクノロジーによる河川・湖沼の水質浄化―持続的な水環境の保全と再生, 島谷幸宏, 細見正明 and 中村圭吾 (Eds.), ソフトサイエンス社, Tokyo, Japan.
行政院環境保護署 (2019). 108年度南區水庫水質治理前瞻綜合管理計畫, 環保
署水保處委辦計畫,成大研究發展基金會執行, 臺北市,臺灣.
島谷幸宏 (2003). 序論:エコテクノロジーによる水質浄化の概念, In エコテクノロジーによる河川・湖沼の水質浄化―持続的な水環境の保全と再生, 島谷幸宏, 細見正明 and 中村圭吾 (Eds.), ソフトサイエンス社, Tokyo, Japan.
徐開欽 (2017). 日本分散型污水處理設施浄化槽去除氮磷技術之應用現況, In 建築物污水處理設施去除氮磷技術座談會, 台北科技大學, Taipei, Taiwan.