| 研究生: |
黃士文 Huang, Shih-Wun |
|---|---|
| 論文名稱: |
剪力式壓電晶體噴墨頭陣列設計研究 Studies on Shear Mode Piezoelectric Ceramic Printhead Array Design |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 剪力式 、壓電 、噴墨頭 、模擬 |
| 外文關鍵詞: | shear mode, piezoelectric, printhead, simulation |
| 相關次數: | 點閱:34 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著噴墨技術的進步,噴墨技術不再只是應用在傳統列印市場上,近年來由於平面顯器以及半導體業的蓬勃發展,產品需求量的急劇上升下,為了降低成本以及節省製程時間,傳統的黃光微影製程已漸漸不敷使用,紛紛尋求新的製程技術,這之中最被廣為應用的,就是壓電致動式噴印技術。
本研究之目的在於研究一種新的壓電式噴墨頭製造技術,不同於傳統的壓電式噴墨頭製造所採用的黃光微影技術,改以晶圓切割的方式同時切割出流道以及壓電致動牆,可以大幅降低製造成本及時間,並且具有高於傳統壓電噴墨頭設計將近兩倍的噴孔密度。以ANSYS模擬分析發現此噴墨頭噴射一50~80 pl.的液滴所需的電壓為30~50伏特之間。並由對電極覆蓋長度與致動牆形變量的關係模擬發現為一非線性關係,在電極覆蓋長度達55~60%致動牆高度時,致動牆的變形量有明顯的上升。
With the progress of the ink-jet technologies, the ink-jet technologies have not just application to traditional printing market. In recent years, the development of the flat-display technologies are rising and flourishing and the requirement of displayers is increasing largely. For coat down and manufacture time saving, the yellow light process is not satisfied by industry. Therefore, the industry starts to find new process and among these processes, the piezoelectric printing technology is applied most popularly.
This paper’s purpose is to study one kind of new process technology of piezoelectric printing head which is different from traditional yellow light process. Using wafer-cutting technology to form the channels and acting walls can reduce manufacture cost and time substantially.
As the MEMS manufacturing is time consuming and the assembly is still on the way. We use finite element analysis simulation, and find that for firing an 50~80 pl. droplet we most apply 30~50 voltage different pulse to this new piezoelectric printhead. By simulating the relationship between different electrodes cover length and the cross area change of ink channel under the same applied external Voltage, the result shows when the electrodes cover length is about 55%~60% of actuator wall high, the quantity of ink channel cross area change has obviously rising.
1. D. Rose, “Microdispensing Technologies in Drug Discovery,” DDT, Vol. 4, No.9, Sep., 1999, USA
2. D. J. Hayes, “Process for Manufacturing Metal Ball Electrodes for a Semiconductor Device,” U.S. Patent 5,861,323, January 19, 1999.
3. Jayesh Bharathan and Yang Yang, “Polymer electroluminescent devices processed by inkjet printing,” App. Phys. Lett., Vol. 72, No.21, 25 May, 1998.
4. Sawyer B. Fuller, Eric J. Wilhelm, and Joseph M. Jacobson, “Ink-Jet Printed Nanoparticle Microelectromechanical Systems,” Journal of Microelectromechnaical Systems, vol. 11, No. 1, February 2002.
5. D. J. Hayes and M. W. Hartnett, “Method for Preparing a Chip Scale Package and Product Produced by the Method,” U.S. Patent 6,114,187, September 05, 2000.
6. Hue P. Le, “Progress and Trends in Ink-jet Printing Technology,” Journal of Imaging Science and Technology • Volume 42, Number 1, January/February 1998.
7. Christian Rembe, Stefan aus der Wiesche, Eberhard P. Hofer, “Thermal Ink Jet Dynamics: Modeling, Simulation, and Testing,” Microelectronics Reliability vol. 40, pp. 525-532, 2000.
8. Ping-Hei Chen, Wen-Cheng Chen and S.-H. Chang, “Bubble Growth and Ink Ejection Process of a Thermal Ink Jet Printhead,” Int. J. Mech. Sci., Vol. 39, No. 6, pp. 683-695, 1997.
9. S. Kamisuki, M. Fujii, T. Takekoshi, C. Tezuka and M. Atobe, “A High Resolution, Electrostatically-Driven commercial Inkjet Head,” IEEE Micro Electro Mechanical Systems, 2000. The Thirteenth Annual International Conference, pp. 793-798, 2000.
10. S. Kamisuki, T. Hagata, C. Tezuka, Y. Nose, M. Fujii, M. Atobe, “A Low Power, Small, Electrostatically-Driven Commercial Inkjet Head,” Micro Electro Mechanical Systems, 1998. MEMS 98. IEEE Proceedings., The Eleventh Annual International Workshop, pp. 63- 68, 1998.
11. B. Hadimioglu, A. Elrod, D. L. Steinmetz, M. Lim, C. Zesch, “Acoustic Ink Printing,” Ultrasonics Symposium, 1992. IEEE Proceedings, vol. 2, pp. 929-935, 1992,.
12. B. Hadimioglu, S. Elrod, R. Sprague, “Acoustic Ink printing: An Application of Ultrasonics for Photographic Quality Printing at High Speed,” IEEE Ultrasonics Symposium, vol. 1, pp. 627 – 635, 2001.
13. Jürgen Brünahl, Alex M. Grishin, “Piezoelectric shear mode drop-on-demand inkjet actuator,” Sensors and Actuators, A 101, pp. 371-382, 2002.
14. R. Elmqvist, “Measuring instrument of the recording type,” US Patent no. 2,566,443, 1948.
15. Richard G. Sweet, “Fluid Droplet Recorder,” US Patent no. 3,596,275.
16. I. Endo, Y. Sato, S. Saito, T. Nakagiri, S. Ohno, “Liquid Jet Recording Process and Apparatus thereof,” UK Patent no. 2,007,162, 1979.
17. J.L. Vaught, F.L. Cloutier, D.K. Donald, J.D. Meyer, C.A. Tacklind, H.H. Taub, “Thermal Inkjet Printer,” US Patent no. 4,490,728, 1984.
18. Francis C. Lee, “PZT Printing Applications, Technologies, New Devices,” Ultrasonics Symposium, IEEE Proceedings, 1988.
19. W. Scott Bartky, Anthony D. Paton, Stephen Temple, A. John Michaelis, “Droplet Deposition Apparatus,” U.S. patent no. 4,879,568, 1989.
20. Stephen Temple, “High Densty Multi-Channel Array, Electrically Pulsed Droplet Deposition Apparatus,” U.S. patent no. 5,016,028, 1991.
21. Qiming Zhang, Nagoya, Japan, “Piezoelectric Type Liquid Droplet Ejecting Device Which Compensates For Residual Pressure Fluctuations,” U.S. patent no. 5,757,392.
22. Hilarion Braun, Beaver Creek, Ohio, “Piezoelectric ink jet print head and method of making,” U.S. patent no. 5,598,196.