簡易檢索 / 詳目顯示

研究生: 蕭婷予
Hsiao, Ting-Yu
論文名稱: 颱風風力載重作用下離岸風機支撐結構的運轉行為
Behavior of Offshore Wind Turbine Support Structures under the Wind Load of Typhoons
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 100
中文關鍵詞: 套管式離岸風機颱風紊流風場風力荷載風力發電功率
外文關鍵詞: Jacket-type offshore wind turbine, Typhoons, Turbulent wind field, Nacelle load, Wind power
相關次數: 點閱:149下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風力發電為各界極力推廣的再生能源之一,而台灣擁有良好的風場條件,可望使離岸風力發電成為主要的再生能源。每年約有三到四個颱風登陸台灣,帶來強勁風力及豐沛雨水,本研究著重探討模擬颱風風力作用下風機運作及支撐結構的運轉行為。IEC 61400-1及DNVGL等規範是根據歐洲氣候所設計,但歐洲並無颱風及地震等自然災害。然而,地震及颱風對於風機是很大的威脅,而台灣時常面臨這些自然災害。因此,朱聖浩研究團隊由本論文開始發展Turbulence程式,其設計基本要件根據IEC 61400-1、DNVGL及GL Tropical Cyclone Technical Note等規範,延伸設計出颱風程式。Turbulence程式能分析GL Tropical Cyclone Technical Note規範所訂定的熱帶氣旋等級,更能進一步模擬颱風的極端風況。Turbulence程式亦能模擬IEC 61400-1及DNVGL規範中的風況模型,進而與TurbSim程式的結果比較。Turbulence程式與TurbSim程式最大的不同是,Turbulence程式能加入風向、風速隨時間變動的參數,使模擬結果更加符合實際風況,也可模擬颱風風況,而TurbSim程式無法模擬颱風模型。有許多重覆性從IEC 61400-1、DNVGL及GL Tropical Cyclone Technical Note規範而來,為了完整性將其加入我的論文,也同意其他人修改輸入檔及相關參數。另外,所有程式為開放資源,各單位皆可使用。

    Wind power is one of the renewable energy sources promoted by all walks of life, and Taiwan has good wind farm conditions, which is expected to make offshore wind power generation a major renewable energy source. About three to four typhoons land in Taiwan each year, bringing strong winds and abundant rain. This study focuses on the operation of the wind turbine and the supporting structure under the typhoon condition. The IEC 61400-1 and DNVGL standards are designed according to the European climate, but there are no natural disasters such as typhoons and earthquakes in Europe. However, earthquakes and typhoons are a great threat to wind turbines, and Taiwan often faces these natural disasters. Therefore, Shen-Haw Ju's research team started the development of the Turbulence program from this thesis, which is based on the IEC 61400-1, DNVGL and GL Tropical Cyclone Technical Note standards and extends the design of the typhoon program. The Turbulence program analyzes the tropical cyclone classes set by the GL Tropical Cyclone Technical Note standard to further simulate the extreme wind conditions of the typhoon. The Turbulence program can also simulate the wind condition model in the IEC 61400-1 and DNVGL standards and compare it with the results of the TurbSim program. The biggest difference between the Turbulence program and the TurbSim program is that the Turbulence program can add parameters such as wind direction and wind speed variation over time, making the simulation results more realistic and can also simulate typhoon wind conditions, while the TurbSim program cannot simulate the typhoon model. There is much repetitiveness from the IEC 61400-1, DNVGL, and GL Tropical Cyclone Technical Note standards, which are added to my paper for completeness, and agree to other people to modify the input file and related parameters. In addition, all programs are open resources and are available to all units.

    摘要 i Abstract ii Acknowledgements iv Contents v List of Tables viii List of Figures x Chapter 1 Introduction 1 1.1 Background and Purpose 1 1.2 Literature Review 2 1.3 Overview 6 Chapter 2 Wind field establishment for wind turbine analyses 7 2.1 Theory of turbulence wind fields 9 2.1.1 Spectrum model-Kaimal 9 2.1.2 Coherence of wind fields 10 2.1.3 Frequency-domain wind fields 11 2.1.4 Time-domain wind fields 13 2.2 Wind models 14 2.2.1 IEC 61400-1 14 2.2.2 DNVGL 15 2.2.3 GL Tropical Cyclone Technical Note 18 2.2.4 Typhoon 19 2.3 Build the wind field 24 2.3.1 Y-Z plane wind field 24 2.3.2 Power-Law 25 Chapter 3 Turbulence program description and operation steps 26 3.1 Purpose 26 3.2 Program description 27 3.2.1 Development of programs 27 3.2.2 Keywords of Turbulence and FAST programs 29 3.2.3 Parameters of the Turbulence program 31 3.3 Program outline 34 3.3.1 Operation step of the Turbulence program 36 3.3.2 Observation results 43 Chapter 4 Parametric studies 47 4.1 Each wind model in x, y, z and directions 47 4.1.1 Wind speed and direction change over time 48 4.1.2 Typhoon cases 51 4.2 Comparisons of Turbulence & TurbSim programs 53 4.2.1 NTM models 53 4.2.2 ETM models 58 4.2.3 EWM models 63 4.3 Comparisons of the Turbulence model 68 4.3.1 NTM & NTM 68 4.3.2 ETM & ETM 69 4.3.3 RAN 70 4.3.4 NTM & ETM 70 4.4 Forces in the x, y, and z directions 72 4.4.1 GL models 72 4.4.2 Typhoon models 74 4.5 Power 79 4.5.1 GL models 79 4.5.2 Typhoon models 80 Chapter 5 Discussion 82 5.1 Comparison of TurbSim & Turbulence programs 82 5.2 Comparison of IEC 61400 & DNVGL standards 83 5.3 Comparison of GL & Typhoon standards 84 Chapter 6 Conclusion 85 6.1 Conclusion 85 6.2 Future work 86 References 87 Appendix 90

    [1] Arany L., Bhattacharya S., and Hogan S. J. Simplified critical mudline bending moment spectra of offshore wind turbine support structures. Wind Energy. 18(12): p. 2171-2197. (2014).
    [2] Chen X. and Xu J. Z. Structural failure analysis of wind turbines impacted by super typhoon Usagi. Engineering Failure Analysis. 60: p. 391-404. (2016).
    [3] Chiang Y. T. Ultimate load analysis and design of the jacket-type offshore wind turbine under extreme environmental conditions. National Cheng Kung University. Journal Article. (2017).
    [4] Chiu Y. C. Parallel processing techniques and applications in design of the jacket-type offshore wind turbine. National Cheng Kung University. Journal Article. (2017).
    [5] Dai K., Sheng C., Zhao Z., and Yi Z. Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds. Wind and Structures. 25(1): p. 79-100. (2017).
    [6] Dario B. G. and Fulvio S. The Rankine vortex model. PhD - Environmental Fluid Mechanics - Physics of the Atmosphere. (2006)
    [7] DNVGL-ST-0437. Loads and site conditions for wind turbines. Det Norske Veritas: Norway. (2016)
    [8] Giammanco I. M., Schroeder J. L., and Powell M. D. Observed characteristics of tropical cyclone vertical wind profiles. Wind and Structures. 15(1): p. 65-86. (2012).
    [9] GL Renewables Certification. Certification of Wind Turbines for Tropical Cyclone Conditions. Technical Note. Germany. (2013).
    [10] Homicz G. F. VAWT stochastic loads produced by atmospheric turbulence. Computational Aerodynamics Division, Sandia National Laboratories. 111: p. 358-366. (1989).
    [11] IEC 61400-1. International Standard Wind turbines ‐ Part 1: Design requirements (3rd ed.). International Electrotechnical Commission. (2005).
    [12] IEC 61400-3. International Standard Wind turbines ‐ Part 3: Design requirements for offshore wind turbines (1st ed.). International Electrotechnical Commission. (2009).
    [13] Jelesnianski C. P. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Monthly Weather Review. 93(6): p. 343-358. (1965).
    [14] Jonkman B. J. TurbSim User's Guide: Version 1.50. National Renewable Energy Laboratory. Technical Report. NREL/TP-500-46198. (2009).
    [15] Kaimal J. C., Wyngaard J. C., Y. Izumi, and Cote O. R. Spectral characteristics of surface‐layer turbulence. Quarterly Journal of the Royal Meteorological Society. 98: p. 563-589. (1972).
    [16] Lian J., Jia Y., Wang H., and Liu F. Numerical study of the aerodynamic loads on offshore wind turbines under typhoon with full wind direction. Energies. 9(8): 613. (2016).
    [17] Mann J. The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273: p. 141-168. (1994).
    [18] Mann J. Wind field simulation. Prob. Engng, Mech. 13(4): p. 269-282. (1998).
    [19] Schlipf D., Trabucchi D., Bischoff O., Hofsäß M., Mann J., Mikkelsen T., Rettenmeier A., Trujillo J.J., and Kühn M. Testing of frozen turbulence hypothesis for wind turbine applications with a scanning Lidar system. Detaled Program. (2010)
    [20] Shinozuk M. Simulation of multivariate and multidimensional random processes. The Journal of the Acoustical Society of America. 49: p. 357-368. (1970).
    [21] Shinozuka M. and Jan C. -M. Digital simulation of random processes and its applications. Journal of Sound and Vibration. 25 (l): p. 111-128. (1972).
    [22] Solari G. Turbulence Modeling for Gust Loading. J. Struct. Eng. 113(7): p. 1550-1569. (1987).
    [23] Tsai Y. S., Yang Y. C., Chang W. T., and Yang W. C. Wind speed profiles of typhoon Matmo observed using a Doppler Lidar. Proceedings of the 38th Ocean Engineering Conference. p. 77-82. (2016).
    [24] Veers P. S. Modeling stochastic wind loads on vertical axis wind turbines. Sandia Report. SAND83-1909.UC-60. (1984).
    [25] Veers P. S. Three-dimensional wind simulation. Sandia Report. SAND88-0152. UC-261. (1988).
    [26] Wei K., Arwade S. R., Myers A. T., Valamanesh V., and Pang W. C. Effect of wind and wave directionality on the structural performance of non-operational offshore wind turbines supported by jackets during hurricanes. Wind Energy. 20(2): p. 289-303. (2017).
    [27] 李健、侯一筠、孫瑞。台風模型風場建立及其模式驗證。海洋科學。第三十七卷,第十一期:95-102頁。(2013)。
    [28] 吳庭君、王俊凱、賴文政、蘇煒年、黃金城。國際離岸風機颱風設計標準比對與分析。機械新刊。第三卷,第六期:65-75頁。(2018)。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE