簡易檢索 / 詳目顯示

研究生: 劉厚均
Liu, Hou-Chun
論文名稱: 評估穩定鍶同位素系統於陸源風化過程中的分化行為
Evaluation of Stable Strontium Isotope Fractionation During Continental Weathering Processes
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 博士
Doctor
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 107
中文關鍵詞: 穩定鍶同位素δ88/86Sr矽酸鹽差異風化成土作用次生碳酸鹽沈澱鍶同位素分化
外文關鍵詞: Stable Sr isotopes, δ88/86Sr, incongruent silicate weathering, pedogenesis, secondary calcite precipitation, Sr isotope fractionation
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球氣候系統和陸源的風化作用構成一個相互影響的回饋機制。在地質時間尺度下,陸源風化作用會改變大氣中的二氧化碳含量,因此將擾動全球的氣候狀態;同時氣候狀態的改變抑會影響陸源風化的來源、速率及程度。這個交互作用的機制就取決於矽酸鹽風化所消耗的二氧化碳量及海洋碳酸鹽循環所釋出二氧化碳量的平衡。因此,釐清陸源風化的來源(矽酸鹽或是碳酸鹽風化)及研究風化作用的程度將有助於了解長時間尺度的氣候變遷。
    第一章,結合放射性(87Sr/86Sr)及穩定(δ88/86Sr)鍶同位素系統的新方法,比過去單獨使用放射性鍶同位素系統,更能精確的評估冰期與間冰期尺度海洋鍶同位素的收支模型(marine Sr isotopic budget),進而探討地質時間尺度的風化趨勢及氣候變遷的相關議題。這是因為新方法同時結合87Sr/86Sr有效示蹤風化來源(對於海洋系統的貢獻),及δ88/86Sr的同位素分化評估海洋碳酸鈣沉澱時所移除海水鍶通量。不過,目前對於δ88/86Sr在陸源風化環境裡的研究著墨不多,分化機制也尚未明確,因此在應用這個新的同位素工具來解析海洋鍶同位素的收支模型的同時,必須先釐清幾個前提:
    (1) 矽酸鹽與碳酸鹽的δ88/86Sr比值分佈範圍。
    (2) 影響δ88/86Sr在陸源風化環境中分化的潛在機制為何?
    (3) 控制陸源通量(河水)的δ88/86Sr比值的機制為何?
    為有效評估上述問題,本研究透過研究自然樣品及實驗室控制實驗來釐清穩定鍶同位素系統在陸源風化過程中潛在的同位素分化行為。
    第二章,本研究發展結合empirical external normalization(EEN)及 standard sample bracketing(SSB)的質量偏移(mass bias)修正技術在多接收器感應耦合電漿質譜儀(MC-ICP-MS)量測高精確、精準度的穩定鍶同位素比值(δ88/86Sr)。本章節深入探討Sr與Zr在MC-ICP-MS測量中的同位素分化行為,並評估使用92Zr/90Zr比值取代現行91Zr/90Zr比值作為δ88/86Sr量測時質量偏移修正的基準。結果顯示,92Zr/90Zr比值在質譜儀中產生的非質量偏移的效應(instrumental mass independent isotope fractionation)較91Zr/90Zr比值來得小,因此新的方法可提昇1.5倍的分析精確度。本研究所建立之新方法除了提供了相當於使用雙示蹤計(double spikes)質量偏移修正技術的精確度,並且提高了樣品的分析效率。
    第三章,透過中國黃土高原經歷強烈成土作用的古土壤剖面,評估矽酸鹽礦物化學風化過程中可能的δ88/86Sr同位素分化。本研究運用化學序列萃取(sequential extraction)技術分析古土壤中可交換相(exchangeable)、氧化物相(oxides)及矽酸鹽相的δ88/86Sr比值。結果顯示,在矽酸鹽差異風化(silicate incongruent weathering)過程當中,較重的鍶同位素核種有被優先釋放至可交換相或土壤水的趨勢。這個現象進一步在實驗室透過矽酸鹽及黏土礦物標準品的稀酸淋溶(leaching)實驗獲得證實。
    第四章,本研究透過碳酸鹽流域河水δ88/86Sr的時間序列監測評估次生碳酸鈣的沈澱及矽酸鹽礦物差異風化對於河水δ88/86Sr的影響。石灰岩洞穴河水的監測結果呈現了季節性的δ88/86Sr分佈趨勢,顯示在高溫多雨季節矽酸鹽的風化作用提供高放射性87Sr/86Sr及較重δ88/86Sr的來源。另一方面,至少有30%~55%溶解鈣離子在次生碳酸鈣沈澱時被移除,導致河水δ88/86Sr全面性約有0.1‰偏重的結果。這些數據強調次生碳酸鈣沉澱對於碳酸鹽流域河水富集較重δ88/86Sr的影響,以及受到高強度的矽酸鹽風化呈現較高87Sr/86Sr及δ88/86Sr比值的極端值。
    第五章,統計目前所有公開發表的δ88/86Sr文獻數據(2006年至2015年初)及本研究的成果,用以評估哪些潛在的機制控制陸源風化通量的δ88/86Sr比值變化及變異程度對海洋鍶同位素收支模型的影響。統計結果顯示,矽酸鹽和碳酸鹽的δ88/86Sr比值分佈範圍顯著地比河流的分佈範圍輕,顯示河水的δ88/86Sr比值分佈不是單純反映岩性的變化。風化過程中相關的同位素分化機制,諸如次生碳酸鹽生成、矽酸鹽的差異風化及植被的攝取,都是潛在導致富集較重δ88/86Sr比值的因素。
    在冰期與間冰期的時間尺度之下,陸源風化作用的來源與程度呈現差異將會對於整個海洋鍶同位素收支模型帶來顯著的影響。因此,更全面的評估現代河川δ88/86Sr比值時序及空間上的變異是一個相當重要的研究議題,能對於理解地質時間尺度上的陸源風化還有建構更精準的全球氣候變遷模式有正面的影響。

    The relationship between global climate change and continental weathering is a cause-consequence feedback system. Global climate may be perturbed by any of processes controlling weathering through changing atmospheric CO2 abundance, and in turns to further affect the extent of weathering. In this iteration, the atmospheric CO2 fluctuation is controlled by the stoichiometric balance between the CO2 consumption by silicate mineral weathering and CO2 release by marine carbonate precipitation at long-term time scale. Thus, discriminating the terrestrial weathering sources from silicates and carbonates, and determining the extent of weathering are important and the fundamental knowledge for comprehending the long-term climatic evolution.
    In chapter 1, the application of newly triple Sr isotopes, 87Sr/86Sr and δ88/86Sr ratios, was introduced and suggested to serve as a powerful isotopic tracer, rather than the 87Sr/86Sr alone, for simultaneously determining the continental weathering fluxes to the ocean and quantifying the Sr burial flux by the carbonate precipitation in the marine system at glacial and interglacial climatic cycles. Given that rivers are the largest Sr source to the ocean, however, there were only few attempts available for studying relevant controls on δ88/86Sr fractionation in riverine waters. In order to have confidence in interpretation based on the recent developed isotopic proxy, the following questions should be therefore clarified by the first order:
    (1) The variability of δ88/86Sr for lithological specimens, i.e. silicates and carbonates.
    (2) Potential physicochemical processes that controlling the δ88/86Sr fractionation in terrestrial environments.
    (3) Lithology and/or fractionation control the variability of δ88/86Sr in riverine waters.
    To address those fundamental questions, the following chapters provide a comprehensive evaluation of stable Sr isotope fractionation during continental weathering processes by natural specimens and laboratory experimental works.
    In chapter 2, we demonstrated a highly precise and accurate δ88/86Sr determination by using multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) with empirical external normalization and standard sample bracketing (EEN-SSB) method for mass bias correction. In this chapter, we evaluated the fractionation behaviors of Sr and Zr isotopes during MC-ICP-MS determinations and established a modified procedure to apply 92Zr/90Zr instead of currently available 91Zr/90Zr for Sr isotopic mass bias correction. A factor of 1.5 was improved in precision of our δ88/86Sr determination that is likely owing to the smallest instrumental mass-independent fractionation between the isotopic pair of 88Sr/86Sr and 92Zr/90Zr. This new method allows 87Sr/86Sr and δ88/86Sr ratios to be measured simultaneously with high throughput and comparable precision and reproducibility with double spike (DS) applied MC-ICP-MS δ88/86Sr determinations.
    In chapter 3, to evaluate the potential processes lead to δ88/86Sr fractionation during silicate mineral weathering, an intense pedogenic paleosol sequence was sampled in the Chinese Loess Plateau (CLP). Sequential extraction procedure was applied to isolate different geochemical phases of the soils to study the stable Sr isotopic distributions in the extracted exchangeable, reducible and silicate fractions. The results suggested that heavier δ88/86Sr was preferentially released during incongruent silicate mineral weathering. This is further evidenced by the acid leaching experiments using the soil silicate phase, primary silicate minerals and clay standards.
    In chapter 4, an annual time-series monitoring of chemical and Sr isotopic compositions on a carbonate-dominated catchment was performed to evaluate the influences of secondary calcite precipitation and silicate mineral weathering on water δ88/86Sr. A seasonal systematic of karst cave stream water δ88/86Sr was detected showing coherent heavier δ88/86Sr and radiogenic 87Sr/86Sr ratios detected in the warm and rainfall period reflecting enhanced biological activities and intensive silicate weathering at that time. On the other hand, at least 30% to 55% of Ca was removed by the secondary calcite precipitation and lead to 0.1‰ heavier in water δ88/86Sr. Those time-series data emphasizes the critical role of secondary calcite precipitation on the comprehensive heavy δ88/86Sr ratios in waters draining carbonate-dominated catchments, and peak of related heavy δ88/86Sr ratios by intensive silicate weathering in wet season and extreme rainfall events.
    In chapter 5 (conclusion), we compile all the currently published stable Sr isotope data from literature sources (2006 to early 2015) and this study for evaluating the potential mechanisms controlling the sensitivity and variability of δ88/86Sr of the continental weathering flux to the ocean and its implication for global Sr cycling. The data suggests that the variability of δ88/86Sr of the terrestrial silicate materials and carbonates are statistically lighter than that of riverine waters. In stead of lithology, fractionation of Sr stable isotopes during and post-weathering processes, such as secondary phase precipitated, incongruent silicate weathering, and vegetation uptake, might be more important factors and by the first order lead to the enrichment of heavy δ88/86Sr in the waters.
    The degree of δ88/86Sr fractionation in continental weathering environments may have significant implications to the oceanic Sr isotopic budget at glacial-interglacial time scales. The variability of δ88/86Sr in modern rivers will still need to be better constrained for studying the global Sr cycling at geological time scales.

    ABSTRACT OF THE DISSERTATION ........I ABSTRACT IN CHINESE ........V ACKNOWLEDGEMENT ........VII TABLE OF CONTENTS ........VIII LIST OF TABLES ........XI LIST OF FIGURES ........XII CHAPTER 1. Introduction ........1 1.1 Research background ........1 1.1.1 Radiogenic Sr isotopic ratios ........1 1.1.2 Continental weathering at glacial-interglacial cycles ........3 1.1.3 Limitation of radiogenic Sr isotopic ratios ........6 1.1.4 Non-traditional Sr stable isotopes ........6 1.2 Aims of this study ........8 CHAPTER 2. Evaluation of Precise Triple Sr Isotope Determination using MC-ICP-MS ........10 2.1 Introduction ........10 2.2 Experimental ........11 2.2.1 Materials and reagents ....... 11 2.2.2 Sample preparation and ion chromatography........12 2.2.3 Instrumentation ........13 2.2.4 Mass bias correction ........14 2.3 Results and discussion ........17 2.3.1 Zr standards applied for mass bias correction ........17 2.3.2 Evaluation of Sr and Zr isotopic fractionation in MC-ICP-MS ........18 2.3.3 Validation of analytical protocol ........22 2.3.4 Comparison with other techniques ........25 2.4 Conclusion ........27 CHAPTER 3. Stable Strontium Isotope Fractionation during Continental Weathering Processes in the Chinese Loess Plateau ........28 3.1 Introduction ........28 3.2 Experimental ........30 3.2.1 Natural specimens ........30 3.2.2 Laboratory experiments ........33 3.3. Results ........36 3.3.1 Natural specimens ........36 3.3.2 Laboratory experiments ........41 3.4 Discussion ........47 3.4.1 Potential stable Sr isotope fractionation during incongruent silicate weathering ........47 3.4.2 Geochemical significance of stable Sr isotope in the Weinan specimens’ labile fractions ........50 3.4.3 Controls of stable Sr isotope fractionation during pedogenesis in the CLP ........53 3.5 Conclusion ........55 CHAPTER 4. Evaluation of Stable Sr Isotope Fractionation in Carbonate-dominated Weathering Environments from A Chinese Karst Underground Stream ........57 4.1 Introduction ........57 4.2 Study area and sample collection ........59 4.2.1 Time-series cave water sampling in Loufang Cave ........59 4.2.2 Dripwaters and calcites precipitated in the Chinese caves ........60 4.3 Results ........62 4.3.1 Time-series water mentoring in the Luofang Cave ........62 4.3.2 Sr isotopic fractionation between cave dripwaters and calcites precipitated ........65 4.4 Discussion 67 4.4.1 Seasonal variation of Sr sources in the cave waters ........67 4.4.2 Controls of Sr isotopic fractionation in cave waters ........72 4.5 Conclusions and implications ........77 CHAPTER 5. Conclusion ........79 References ........85 Appendix: Supplementary Information ........100

    An, Z., Liu, T., Lu, Y., Porter, S. C., Kukla, G., Wu, X. and Hua, Y. (1990) The long- term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quat. Int. 7-8, 91–95.
    Anbar, A.D. and Rouxel, O. (2007) Metal stable isotopes in paleoceanography. Annu. Rev. Earth Planet. Sci. 35, 717–746.
    Bain, D.C. and Bacon, J.R. (1994) Strontium isotopes as indicators of mineral weathering in catchments. Catena 22, 201–214.
    Banner, J.L. (2004) Radiogenic isotopes: systematics and applications to earth surface processes and chemical stratigraphy. Earth-Sci. Rev. 65, 141–194.
    Bar-Matthews, M., Ayalon, A., Kaufman, A. and Wasserburg, G.J. (1999) The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 166, 85–95.
    Bickle, M.J., Chapman, H.J., Bunbury, J., Harris, N.B.W., Fairchild, I.J., Ahmad, T., and Pomiès, C. (2005) Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges. Geochim. Cosmochim. Acta 69, 2221–2240.
    Blum, J.D. and Erel, Y. (1995) A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, doi:10.1038/373415a0.
    Blum, J.D. and Erel, Y. (1997) Rb-Sr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204.
    Blum, A.E. and Stillings, L.L. (1995) Feldspar dissolution kinetics. Reviews in Mineral. Geochem. 31, 291–351.
    Böhm, F., Eisenhauer, A., Tang, J., Dietzel, M., Krabbenhöft, A., Kisakürek, B., and Horn, C. (2012) Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochim. Cosmochim. Acta., doi:10.1016/j.gca. 2012.04.038.
    Bullen, T.D., Krabbenhoft, D.P. and Kendall, C. (1996) Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA. Geochim. Cosmochim. Acta 60, 1807–1821.
    Bullen, T., White, A., Blum, A., Harden, J. and Schulz, M. (1997) Chemical weathering of a soil chronosequence on granitoid alluvium: II. Mineralogic and isotopic constraints on the behavior of strontium. Geochim. Cosmochim. Acta 61, 291–306.
    Bureau of Geology and Mineral Resources of Sichuan Province (1991) Regional geology of Sichuan Province. Geological Publishing House, Beijing.
    Burke, W.H., Denison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F. and Otto, J.B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519.
    Charlier, B., Nowell, G.M., Parkinson, I.J., Kelley, S.P., Pearson, D.G. and Burton, K.W. (2012) High temperature strontium stable isotope behaviour in the early solar system and planetary bodies. Earth Planet. Sci. Lett. 329-330, 31–40.
    Chen, J., Qiu, G. and Yang, J.D. (1997) Sr isotopic composition of loess carbonate and identification of primary and secondary carbonates. Prog. Nat. Sci. 7, 590–593.
    Chester, R. and Hughes, M.J. (1966) A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol. 2, 249–262.
    Cowan, B.D., Osborne, M.C. and Banner, J.L. (2013) Temporal variability of cave- air CO2 in central Texas. Journal of Cave and Karst Studies 75, 38–50.
    Davis, A.C., Bickle, M.J. and Teagle, D.A.H. (2003) Imbalance in the oceanic strontium budget. Earth Planet. Sci. Lett. 211, 173–187.
    de Laeter, J.R., Bohlke, J.K., de Bievre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R. and Taylor, P.D.P. (2003) Atomic weights of the elements: Review 2000 - (IUPAC technical report). Pure Appl. Chem. 75, 683–800.
    de Souza, G.F., Reynolds, B.C., Kiczka, M. and Bourdon, B. (2010) Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochim. Cosmochim. Acta 74, 2596–2614.
    Dessert, C., Dupré, B., Gaillardet, J., François, L.M. and Allègre, C.J. (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273.
    Diao, G. and Wen, Q. (1997) The paleoclimatic variation records of carbonate and iron oxides in the Weinan loess section. Chin. J. Geochem. 16, 62–68.
    Ding, Z.L., Yu, Z.W., Yang, S.L., Sun, J.M., Xiong, S.F. and Liu, T.S. (2001) Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese Loess Plateau. Geophys. Res. Lett. 28, 2097–2100.
    Douglas, G.B., Gray, C.M., Hart, B.T. and Beckett, R. (1995) A strontium isotopic investigation of the origin of suspended particulate matter (SPM) in the Murray-Darling River system, Australia. Geochim. Cosmochim. Acta 59, 3799–3815.
    Ehrlich, S., Gavrieli, I., Dor, L.B. and Halicz, L. (2001) Direct high-precision measurements of the 87Sr/86Sr isotope ratio in natural water, carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J. Anal. At. Spectrom. 16, 1389–1392.
    Erel, Y., Blum, J.D., Roueff, E. and Ganor, J. (2004) Lead and strontium isotopes as monitors of experimental granitoid mineral dissolution. Geochim. Cosmochim. Acta 68, 4649–4663.
    Fairchild, I.J., Borsato, A., Tooth, A.F., Frisia, S., Hawkesworth, C.J., Huang, Y., McDermott, F. and Spiro, B. (2000) Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem. Geol. 166, 255–269.
    Fang, X., Li, J. and Van der Voo, R. (1999) Age and provenance of loess in West Qinling. Chin. Sci. Bull. 44, 2188–2192.
    Faure, G. (1986) Principles of Isotope Geology. Wiley, New York.
    Fietzke, J. and Eisenhauer, A. (2006) Determination of temperature‐dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC‐ ICP‐MS. Geochem. Geophys. Geosyst., doi:10.1029/2006GC001243.
    Ford, D.C. and Williams, P.W. (1989) Karst Geomorphology and Hydrology. Springer, Netherlands.
    Fortunato, G., Mumic, K., Wunderli, S., Pillonel, L., Bosset, J.O. and Gremaud, G. (2004) Application of strontium isotope abundance ratios measured by MC- ICP-MS for food authentication. J. Anal. At. Spectrom. 19, 227–234.
    Gaillardet, J., Dupré, B., Louvat, P. and Allegre, C.J. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30.
    Gibbs, M.T. and Kump, L.R. (1994) Global chemical erosion during the Last Glacial Maximum and the present: Sensitivity to changes in lithology and hydrology. Paleoceanography 9, 529–543.
    Halicz, L., Segal, I., Fruchter, N., Stein, M. and Lazar, B. (2008) Strontium stable isotopes fractionate in the soil environments? Earth Planet. Sci. Lett. 272, 406–411.
    He, H.B., Tang, J., Liu, S., Yang, L., Mi, X., Chen, Q., Chen, L., Huang, J. and Zhou, H. (2014) Spatial and temporal variation of environments and influencing factors in Loufang Cave, Northeast of Sichuan Province. Tropical Geography 34, 696–703.
    Heumann, K.G., Gallus, S.M., Radlinger, G. and Vogl, J. (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J. Anal. At. Spectrom. 13, 1001–1008.
    Horwitz, E.P., Chiarizia, R. and Dietz, M.L. (1992) A Novel Strontium-Selective Extraction Chromatographic Resin. Solvent Extraction and Ion Exchange 10, 313–336.
    Huang, Y. and Fairchild, I.J. (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim. Cosmochim. Acta 65, 47– 62.
    Huh, Y., Chan, L.H. and Chadwick, O.A. (2004) Behavior of lithium and its isotopes during weathering of Hawaiian basalt. Geochem. Geophys. Geosyst. 5, doi: 10.1029/2004GC000729.
    Jacobson, A.D., Blum, J.D. and Walter, L.M. (2002) Reconciling the elemental and Sr isotope composition of Himalayan weathering fluxes: insights from the carbonate geochemistry of stream waters. Geochim. Cosmochim. Acta 66, 3417–3429.
    Jeong, G.Y., Hillier, S. and Kemp, R.A. (2011) Changes in mineralogy of loess– paleosol sections across the Chinese Loess Plateau. Q Res 75, 245–255.
    Johnson, K.R., Hu, C., Belshaw, N.S. and Henderson, G.M. (2006) Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett. 244, 394–407.
    Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke, J., Liebetrau, V., Augustin, N., Peucker-Ehrenbrink, B., Müller, M.N., Horn, C., Hansen, B.T., Nolte, N. and Wallmann, K. (2010) Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim. Cosmochim. Acta 74, 4097–4109.
    Krabbenhöft, A., Fietzke, J. and Eisenhauer, A. (2009) Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87 Sr/84 Sr double spike. J. Anal. At. Spectrom., doi:10.1039/b906292k.
    Kramchaninov, A.Y., Chernyshev, I.V. and Shatagin, K.N. (2012) Isotope analysis of strontium by multicollector inductively-coupled plasma mass spectrometry: High-precision combined measurement of 88Sr/86Sr and 87Sr/86Sr isotope ratios. J. Anal. At. Spectrom., doi:10.1134/S1061934812140067.
    Lasaga, A.C. (1984) Chemical kinetics of water‐rock interactions. J. Geophys. Res. 89, 4009–4025.
    Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E. and Nagy, K.L. (1994) Chemical weathering rate laws and global geochemical cycles. Geochim. Cosmochim. Acta 58, 2361–2386.
    Lei, X., Yue, L., Wang, J. and Zhang, L. (1998) Magnetic characteristics and their paleoclimatic significance of Fengzhou loess in the Qinling Mountains of China. Chin. Sci. Bull. 43, 1571–1575.
    Li, G., Chen, J. and Chen, Y. (2013) Primary and secondary carbonate in Chinese loess discriminated by trace element composition. Geochim. Cosmochim. Acta 103, 26–35.
    Li, G., Chen, J., Liu, L., Yang, J. and Sheng, X. (2007) Global cooling forced increase in marine strontium isotopic ratios: Importance of mica weathering and a kinetic approach. Earth Planet. Sci. Lett. 254, 303–312.
    Li, G., Chen, J., Yang, J. and Conway, T.M. (2009) Natural and anthropogenic sources of East Asian dust. Geology 37, 727–730.
    Li, H.C., Ku, T.L., You, C.F., Cheng, H., Edwards, R.L., Ma, Z.B., Tsai, W.S. and Li, M.D. (2005) 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochim. Cosmochim. Acta 69, 3933–3947.
    Li, T. and Li, G. (2014) Incorporation of trace metals into microcodium as novel proxies for paleo-precipitation. Earth Planet. Sci. Lett. 386, 34–40.
    Liu, D. (1985) Loess and the Environment, China Ocean Press, Beijing.
    Liu, J.F., Zhao, Z.S. and Jiang, G.B. (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42, 6949–6954.
    Liu, T.S. and Ding, Z.L. (1998) Chinese loess and the paleomonsoon. Annu. Rev. Earth Planet. Sci. 26, 111–145.
    Ma, J.L., Wei, G.J., Liu, Y., Ren, Z.Y., Xu, Y.G. and Yang, Y.H. (2013) Precise measurement of stable (δ88/86Sr) and radiogenic (87Sr/86Sr) strontium isotope ratios in geological standard reference materials using MC-ICP-MS. Chin. Sci. Bull. doi:10.1007/s11434-013-5803.
    Martin, J.M. and Meybeck, M. (1979) Elemental mass-balance of material carried by major world rivers. Marine Chemistry 7, 173–206.
    Mason, T.F.D., Weiss, D.J., Horstwood, M., Parrish, R.R., Russell, S.S., Mullane, E. and Coles, B.J. (2004) High-precision Cu and Zn isotope analysis by plasma source mass spectrometry - Part 2. Correcting for mass discrimination effects. J. Anal. At. Spectrom. 19, 218–226.
    Meybeck, M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287, 401–428.
    Millot, R., Gaillardet, J., Dupré, B. and Allègre, C.J. (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83–98.
    Mokadem, F., Parkinson, I.J., Hathorne, E.C., Anand, P., Allen, J.T. and Burton, K.W. (2015) High-precision radiogenic strontium isotope measurements of the modern and glacial ocean: Limits on glacial–interglacial variations in continental weathering. Earth Planet. Sci. Lett. 415, 111–120.
    Moynier, F., Agranier, A., Hezel, D.C. and Bouvier, A. (2010) Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth Planet. Sci. Lett. 300, 359–366.
    Négrel, P., Allegre, C.J., Dupré, B. and Lewin, E. (1993) Erosion Sources Determined by Inversion of Major and Trace-Element Ratios and Strontium
    Isotopic-Ratios in River Water - the Congo Basin Case. Earth Planet. Sci. Lett. 120, 59–76.
    Neymark, L.A., Premo, W.R. and Mel'nikov, N.N. (2014) Precise determination of δ88Sr in rocks, minerals, and waters by double-spike TIMS: a powerful tool in the study of geological, hydrological and biological processes. J. Anal. At. Spectrom., doi:10.1039/C3JA50310K.
    Ohno, T. and Hirata, T. (2007) Simultaneous determination of mass-dependent isotopic fractionation and radiogenic isotope variation of strontium in geochemical samples by multiple collector-ICP-mass spectrometry. Anal Sci 23, 1275–1280.
    Ohno, T., Komiya, T., Ueno, Y., Hirata, T. and Maruyama, S. (2008) Determination of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr in the Neoproterozoic Doushantuo Formation. Gondwana Res. 14, 126–133.
    Oliva, P., Dupré, B., Martin, F. and Viers, J. (2004) The role of trace minerals in chemical weathering in a high-elevation granitic watershed (Estibère, France): chemical and mineralogical evidence. Geochim. Cosmochim. Acta 68, 2223–2243.
    Palmer, M.R. and Edmond, J.M. (1992) Controls over the strontium isotope composition of river water. Geochim. Cosmochim. Acta 56, 2099–2111.
    Raddatz, J., Liebetrau, V., Rüggeberg, A., Hathorne, E., Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke, J., Correa, M.L., Freiwald, A., and Dullo, W.-C. (2013) Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coralLophelia pertusa. Chem. Geol. 352, 143–152.
    Rao, W., Chen, J., Yang, J., Ji, J., Zhang, G. and Chen, J. (2008) Strontium isotopic and elemental characteristics of calcites in the eolian dust profile of the Chinese Loess Plateau during the past 7 Ma. Geochem. J. 42, 493–506.
    Petroff, A., Mailliat, A., Amielh, M. and Anselmet, F. (2008) Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment 42, 3625–3653.
    Pistiner, J.S. and Henderson, G.M. (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett. 214, 327–339.
    Pye, K. and Zhou, L.P. (1989) Late Pleistocene and Holocene aeolian dust deposition in North China and the Northwest Pacific Ocean. Paleogeogr. Paleoclimatol. Paleoecol. 73, 11–23.
    Quade, J., Roe, L., DeCelles, P.G. and Ojha, T.P. (1997) The Late Neogene 87Sr/ 86Sr Record of Lowland Himalayan Rivers. Science 276, 1828–1831.
    Rahaman, W. and Singh, S.K. (2012) Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge. Geochim. Cosmochim. Acta 85, 275–288.
    Raich, J.W. and Schlesinger, W.H. (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99.
    Rao, W., Chen, J., Yang, J., Ji, J. and Zhang, G. (2009) Sr isotopic and elemental characteristics of calcites in the Chinese deserts: Implications for eolian Sr transport and seawater Sr evolution. Geochim. Cosmochim. Acta 73, 5600– 5618.
    Rao, W., Chen, J., Yang, J., Ji, J., Zhang, G. and Chen, J. (2008) Strontium isotopic and elemental characteristics of calcites in the eolian dust profile of the Chinese Loess Plateau during the past 7 Ma. Geochem J. 42, 493–506.
    Rüggeberg, A., Fietzke, J., Liebetrau, V., Eisenhauer, A., Dullo, W.C. and Freiwald, A. (2008) Stable strontium isotopes (δ88/86Sr) in cold-water corals — A new proxy for reconstruction of intermediate ocean water temperatures. Earth Planet. Sci. Lett. 269, 570–575.
    Russell, W.A., Papanastassiou, D.A. and Tombrello, T.A. (1978) Ca Isotope Fractionation on Earth and Other Solar-System Materials. Geochim. Cosmochim. Acta 42, 1075–1090.
    Sahoo, S.K. and Masuda, A. (1997) Precise measurement of zirconium isotopes by thermal ionization mass spectrometry. Chem. Geol. 141, 117–126.
    Sawaki, Y., Ohno, T., Tahata, M., Komiya, T., Hirata, T., Maruyama, S., Windley, B.F., Han, J., Shu, D. and Li, Y. (2010) The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Res. 176, 46–64.
    Shalev, N., Segal, I., Lazar, B. and Gavrieli, I. (2013) Precise determination of δ88/86Sr in natural samples by double-spike MC-ICP-MS and its TIMS verification. J. Anal. At. Spectrom., doi:10.1039/C3JA50039J.
    Sheng X., Chen J., Ji J., Chen T., Li G. and Teng H. H. (2008) Morphological characters and multi-element isotopic signatures of carbonates from Chinese loess–paleosol sequences. Geochim. Cosmochim. Acta 72, 4323–4337.
    Sjöberg, L. E. and Rickard, D. T. (1984) Temperature dependence of calcite dissolution kinetics between 1 and 62°C at pH 2.7 to 8.4 in aqueous solutions. Geochim. Cosmochim. Acta 48, 485–493.
    Stefánsson,A.,Gıślason,S.R.andArnórsson,S.(2001)Dissolutionofprimary minerals in natural waters: II. Mineral saturation state. Chem. Geol. 172, 251–276.
    Stevenson, E.I., Hermoso, M., Rickaby R.E.M., Tyler, J.J., Minoletti, F., Parkinson, I.J., Mokadem F. and Burton K.W. (2014) Controls on stable strontium isotope fractionationin coccolithophores with implications for the marine Sr cycle. Geochim. Cosmochim. Acta 128, 225–235.
    Stoll, H.M. and Schrag, D.P. (1998) Effects of Quaternary Sea Level Cycles on Strontium in Seawater. Geochim. Cosmochim. Acta 62, 1107–1118.
    Sun, Y., Clemens, S.C., An, Z. and Yu, Z. (2006) Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quat. Sic. Rev. 25, 33–48.
    Sun, Y., Wang, X., Liu, Q. and Clemens, S.C. (2010) Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 289, 171–179.
    Sverdrup, H.U. (1990) The kinetics of base cation release due to chemical weathering, Lund University Press, Lund.
    Tipper, E.T., Galy, A. and Bickle, M.J. (2006) Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle. Earth Planet. Sci. Lett. 247, 267–279.
    Tipper, E.T., Galy, A. and Bickle, M.J. (2008) Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control? Geochim. Cosmochim. Acta 72, 1057–1075.
    Tipper, E.T., Lemarchand, E., Hindshaw, R.S., Reynolds, B.C. and Bourdon, B. (2012) Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream. Chem. Geol. 312-313, 80–92.
    Tong, X.N., Zhou, H.Y., You, C.F., Tang, J., Liu, H.C., Huang, Y. and He, H.B. (2014) Atmospheric deposition fluxes and seasonal variations of elements in NE Sichuan, Central China. Environmental Science 35, 53–59.
    Tsai, P.H., You, C.F., Huang, K.F., Chung, C.H. and Sun, Y.B. (2014) Lithium distribution and isotopic fractionation during chemical weathering and soil formation in a loess profile. J. Asian Earth Sci. 87, 1–10.
    Tu, Y.J., Chang, C.K., You, C.F. and Wang, S.L. (2012) Treatment of complex heavy metal wastewater using a multi-staged ferrite process. J. Hazard. Mater. 209-210, 379–384.
    Usseleman, T.M. and Hay, W.W. (1994) Material Fluxes on the Surface of the Earth, National Academy Press, Washington, DC, 46–60.
    Vance, D., Teagle, D.A.H. and Foster, G.L. (2009) Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets. Nature 458, 493–496.
    Viers, J., Oliva, P., Dandurand, J.L., Dupré, B. and Gaillardet, J. (2014) Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers, 2nd ed, Surface and Groundwater, Weathering and Soils. Elsevier, Netherlands.
    Voigt, J., Hathorne, E.C., Frank, M., Vollstaedt and H., Eisenhauer, A. (2015) Variability of carbonate diagenesis in equatorial Pacific sediments deduced from radiogenic and stable Sr isotopes. Geochim. Cosmochim. Acta 148, 360– 377.
    Vollstaedt, H., Eisenhauer, A., Wallmann, K., Böhm, F., Fietzke, J., Liebetrau, V., Krabbenhöft, A., Farkas, J., Tomašových, A., Raddatz, J. and Veizer, J. (2014) The Phanerozoic δ88/86Sr record of seawater: New constraints on past changes in oceanic carbonate fluxes. Geochim. Cosmochim. Acta 128, 249– 265.
    von Blanckenburg, F., von Wiren, N., Guelke, M., Weiss, D.J. and Bullen, T.D. (2009) Fractionation of Metal Stable Isotopes by Higher Plants. Elements 5, 375–380.
    Walker, J., Hays, P.B. and Kasting, J.F. (1981) A Negative Feedback Mechanism for the Long-Term Stabilization of Earths Surface-Temperature. J. Geophys. Res. 86, 9776–9782.
    Wang, Z.L., Zhang, J. and Liu, C.Q. (2007) Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River. Chemosphere 69, 1081–1088.
    Wei, G., Ma, J., Liu Y., Xie, L., Lu, W., Deng, W., Ren, Z., Zeng, T. and Yang, Y. (2013) Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: Implications for chemical weathering. Chem. Geol. 343, 67–75.
    Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M. and Mahoney, J.B. (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophys. Geosyst. 7, doi:10.1029/2006GC001283.
    White, A.F. and Blum, A.E. (1995) Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747.
    White, A.F., Blum, A.E., Bullen, T.D., Vivit, D.V., Schulz, M. and Fitzpatrick, J. (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim. Cosmochim. Acta 63, 3277– 3291.
    Widanagamage, I.H., Schauble, E.A., Scher, H.D. and Griffith, E.M. (2014) Stable strontium isotope fractionation in synthetic barite. Geochim. Cosmochim. Acta 147, 58–75.
    Wimpenny, J., Gislason, S.R., James, R.H., Gannoun, A., Strandmann Von, P.A.P. and Burton, K.W. (2010) The behaviour of Li and Mg isotopes during primary
    phase dissolution and secondary mineral formation in basalt. Geochim. Cosmochim. Acta 74, 5259–5279.
    Xu, Y., Marcantonio, F. (2004) Speciation of strontium in particulates and sediments from the Mississippi River mixing zone. Geochim. Cosmochim. Acta., doi:10.1016/j.gca.2003.12.016
    Yang, L., Peter, C., Panne, U. and Sturgeon, R.E. (2008) Use of Zr for mass bias correction in strontium isotope ratio determinations using MC-ICP-MS. J. Anal. At. Spectrom. 23, 1269–1274.
    Yang, L., Mester, Z., Zhou, L., Gao, S., Sturgeon, R.E. and Meija, J. (2011) Observations of large mass-independent fractionation occurring in MC- ICPMS: implications for determination of accurate isotope amount ratios. Anal. Chem. 83, 8999–9004.
    Zheng, H., Theng, B.K.G. and Whitton, J.S. (1994) Mineral composition of Loess- Paleosol samples from the Loess Plateau of China and its environmental significance. Chin. J. Geochem. 13, 61–72.
    Zhou, H., Feng, Y.X., Zhao, J.X., Shen, C.C., You, C.F. and Lin, Y. (2009) Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment. Chem. Geol. 268, 233–247.


    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE