| 研究生: |
沈佑展 Shen, Yu-Chan |
|---|---|
| 論文名稱: |
中孔洞氧化鋁、錳氧化鋁合成之研究與應用 A Study on the Synthesis and Application of Mesoporous Alumina and Mesoporous Mn/Al2O3 |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 明膠 、中孔洞氧化鋁 、檸檬酸 、錳氧化鋁 、選擇性催化還原NO |
| 外文關鍵詞: | mesoporous alumina, gelatin, poly-carboxylic-acid, Mn-Al2O3, NH3-SCR |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題可分為利用硝酸鋁與明膠(Gelatin)以sol-gel法合成高比表面積的中孔洞氧化鋁(Mesoporous Alumina)材料,與利用有機酸的螯合法合成具有CTAB特殊微胞孔洞結構的孔洞氧化鋁材料,進而延伸利用此方法合成孔洞錳氧化鋁材料,並嘗試利用在低溫選擇性催化還原NO的轉化應用上。
(1) 以明膠為模板合成中孔洞氧化鋁
在pH = 8.0的反應環境下,利用氫氧化鋁帶部分正電荷和明膠帶部分負電荷而產生的靜電吸引力,與明膠自身的多種官能基(-NH2、-C=O、-COOH、-OH)和氫氧化鋁膠體形成氫鍵作用,再經過100℃水熱穩定結構,產生明膠-單水鋁石(Gelatin-γ-AlOOH)複合材料,經過600℃煅燒3小時後即可合成出高比表面積的孔洞氧化鋁材料。此種合成方法相對於其他工業上常用之長碳鏈界面活性劑之過程更為簡單、低耗能且不會對環境造成汙染,此外嘗試利用不同的氧化鋁源(氯化鋁、鋁酸鈉、異丙醇鋁)皆可成功合成出表面積240 m2/g以上之高比表面積孔洞氧化鋁材料,具有高的可調性和再現性。
(2) 有機酸螯合法合成中孔洞氧化鋁
檸檬酸本身對於金屬有著良好的螯合特性,添加檸檬酸可作為保護劑,在檸檬酸去質子化後,表面的羧酸根可利用氫鍵與氫氧化鋁膠體進行作用,減緩pH值上升時氫氧化鋁的過快聚集反應;此外檸檬酸去質子化後能與帶正電的CTA+界面活性劑形成靜電作用力,檸檬酸此時扮演橋樑的角色將保護住的氫氧化鋁與受靜電吸引的CTAB微胞結合,形成具有3~4奈米CTAB微胞孔洞結構的孔洞氧化鋁材料,實驗結果也說明未添加檸檬酸的反應狀況下,材料無法形成CTAB微胞孔洞結構,表面積僅140 m2/g,其原因為過快的氫氧化鋁聚合速率與無法匹配的作用力,使CTAB難以進入材料主導孔洞結構所致;而除了檸檬酸外,其餘有機酸如醋酸、草酸,也可達到類似的效果。
(3) 有機酸螯合法合成中孔洞錳氧化鋁材料
以有機酸螯合法合成錳氧化鋁材料,利用檸檬酸的高保護性與螯合能力,可大幅增加錳氧化物的分散性與材料比表面積,並且利用水熱所提供的能量,將濾液中的錳離子在材料表面形成Al-O-Mn或Mn-O-Mn的鍵結,減少殘餘在濾液中的錳離子,避免環境污染問題;進一步將材料應用在低溫選擇性催化還原NO的反應上,結果顯示在添加檸檬酸的狀況下皆有著相對無添加檸檬酸材料更高NO轉化率的表現,而添加0.18克適量的檸檬酸所合成出的錳氧化鋁材料則有著最佳的N2選擇性。
A straightforward method is proposed for the synthesis of alumina-based porous materials with a high specific surface area using a sol-gel technique followed by hydrothermal treatment at a low temperature of 100℃. In the proposed approach, aluminum nitrate is used as the alumina source and gelatin, PEG, F127 or CTAB are used as the surfactant. Of the various surfactants used, gelatin interacts particularly well with the aluminum hydroxide, and results in a mesoporous material with the highest surface area (316 m2/g) of all the synthesized materials. A poly-carboxylic-acid (citric acid)-based method is proposed using CTAB as a porous directing agent for producing mesoporous alumina with a uniform pore size of 3~4 nm. The elemental analysis(E.A.) results suggest that the citric acid chelates the aluminum and interacts electronically with the CTAB; thereby helping the CTAB direct the meso-structure. Moreover, the efficient chelating performance of the citric acid slows the condensation rate of the aluminum hydroxide, and thus prevents the aluminum hydroxide from forming bulk species. Finally, the poly-carboxylic-acid chelating method is employed to synthesize Mn-Al2O3 material. It is shown that the citric acid suppresses the condensation of the manganese oxide and hence results in a well-dispersed product. The resulting Mn-Al2O3 material exhibits a high NO conversion rate of 70 % in NH3-SCR catalytic reactions performed at temperatures lower than 300℃.
1. D. H. Everett, Pure Appl. Chem. 1972, 31, 578
2. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710
3. Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier,P. Sieger, R. Leon, P.
M. Petroff, F. Schu¨th and G. D. Stucky,Nature, 1994, 368, 317–321.
4. P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Nature, 1998, 396, 152–155
5. D. M. Antonelli, A. Nakahira and J. Y. Ying, Inorg. Chem., 1996,35, 3126–3136
6. D. M. Antonelli and J. Y. Ying, Angew. Chem., Int. Ed. Engl.,1995, 34, 2014–2017
7. H. J. Shin, R. Ryoo, Z. Liu and O. Terasaki, J. Am. Chem. Soc.,2001, 123, 1246–1247.
8. H. F. Yang and D. Y. Zhao, J. Mater. Chem., 2005, 15,1217–1231
9. Kim, H. N., Lee, S. K. , Am. Mineral. 2013, 98, 1198−1210
10. Frederick J Francis, Encyclopedia of Food Science and Technology, 2nd edition, John Wiley & Sons, New York, 1183-1188, 2000
11. C. Fox, Cosmet Toiletries, 1984, 99, 28
12. D. Chandler, Nature, 2005, 437, 640
13. T. P. Silverstein, Journal of Chemical Education 1998, 75(1), 116
14. K. Esumi and M. Ueno, 2003, Structure-performance Relationships in Surfac -tants. 2nd ed,Vol. 122, New York: Marcel Dekker.
15. M. N. Jones and D. Chapman, 1995, Micelles, Monolayers, and Biomembranes, 89–95. New York: Wiley-Liss.
16. R. J. Stokes and D. F. Evans, 1997, Fundamentals of Interfacial Engineering, 222, New York: Wiley and Sons.
17. F. Cao, Y. Liu, J. Xu, Y. He, B. Hammouda, R. Qiao, et al. Sci Rep, 2015, 5
18. N. Israelachvili, S. Marcelja and R. G. Horn, Q. Rev. Biophys, 1980, 13(2), 121
19. D. J. Mithchell and B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 1981, 77, 601
20. J. Kay and P. D. Weitzman, 1987, Krebs' Citric Acid Cycle: Half a Century and Still Turning, London: Biochemical Society.
21. 馬振基, 2003,奈米材料科技原理與應用。台灣,全華科技圖書股份有限公司。
22. R. I. Walton, Chem. Soc. Rev. 2002, 31, 230
23. R. A. Laudise, 1962, Hydrothermal Synthesis of Single Crystals, New Jersey: John Wiley & Sons, Inc.
24. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian and Y.H. Zhang, J. Mater. Chem. 1999, 9, 1283
25. Y. W. Jun, J. H. Lee, J. S. Choi and J. J. Cheon, J. Phys. Chem. B. 2005, 109, 14795
26. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao and C. H. Yan, Chem. Mater. 2002, 14, 4172.
27. C. Pacholski, A. Kornowski and H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
28. R. L. Penn and J. F. Banfield, Science 1998, 281, 969
29. R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta, 1999, 63, 1549
30. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert and R. L. Penn, Science 2000, 289, 751
31. K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, J. Mater.Chem. 2004, 14, 2575
32. C. H. Gu, V. Y. Jr and J.W. Grant, J. Pharm. Sci. 2001, 90, 1878
33. J. H. ter Horst, R. M. Geertman and G. M. van Rosmalen, J. Cryst.Growth. 2001, 230, 277
34. X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 1998, 120, 5343
35. B. M. Wen, C. Y. Liu and Y. Liu, New J. Chem. 2005, 29, 969
36. B. Cheng and E. T. Samulski, Chem. Commun. 2004, 986
37. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu and D. Que, Nanotechnology, 2004, 15, 622
38. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge and G. K. Wong, Chem. Mater. 2000, 12, 2268
39. J. Joo, S. G. Kwon, J. H. Yu and T. Hyeon, Adv. Mater. 2005, 17, 1873
40. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, Adv. Mater. 2003, 15, 353
41. X. Peng, Adv. Mater. 2003, 15, 459
42. M. Yang, G. Pang, L. Jiang, S. Feng, Nanotechnology. 2006, 17, 206
43. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics. 2004, 23, 95
44. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor. Mesopor. Mat. 2008, 113, 562
45. M. Plabst, L. B. McCusker and T. Bein, J. Am. Chem. Soc. 2009, 131, 18112
46. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal., 1989, 115, 301
47. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J. Phys. Chem. B, 2002, 106, 13287
48. Krisztian Niesz, Peidong Yang and Gabor A. Somorjai ,Chem. Commun., 2005, 41, 1986~1987
49. Fre´de´ric Vaudry, Shervin Khodabandeh, and Mark E. Davis,Chem. Mater. 1996, 8, 1451~1464
50. Blin, J.-L.; Léonard, A.; Yuan, Z.-Y.;Gigot, L.; Vantomme, A.;Cheetham,A.K.; Su, B.-L. Angew. Chem. Int. Ed. 2003, 42, 2872–2875
51. Bruce M. Novak, Adv. Mater. 1993, 5, 422~433
52. G. Lefevre, L. Cerovic, S. Milonjic, M. Fedoroff, J. Finne, A. Jaubertie, J. Colloid Interface Sci. 2009, 337, 449~455.
53. The Environmental Chemistry of Aluminum, Garrison Sposito, Ph.D. 273~277
54. M. Tan, X. Wang, X. Shang, X. Zou, X. Lu, W. Ding, J. Catal., 2014, 314, 117-131
55. Omid Etemadi, Teh Fu Yen, Energy & Fuels, 2007, 21, 2250-2257
56. Kamal M.S. Khalil, .Appl. Surf. Sci. 2008, 255, , 2874-2878
57. Joo Hyun Kim, Kyeong Youl Jung, Kyun Young Park, Sung Baek Cho, Microporous Mesoporous Mater. 2010, 128, 85-90
58. W. Li, F.Y. Li, F.L. Zhuo, M.J. Cao, Q, J. Huang, W.J. Zhang, M.W. Mu, Appl. Surf. Sci. 2015, 353, 1031–1036
59. L. Zhang, W. Kang , D. Xu, J. Jiang, H. Feng, M. Yang, Q. Zhou, H.Wu, Appl. Surf. Sci, 2017, 522, 628–634
60. J. Wang, J. Lu, J. Yang, W. Xiao, J. Wang, Mater. Lett, 2012, 78 199-201
61. Whitty, K. J., Zhang, H. R., and Eddings. Sci. and Tech., 2008, 180, 1117 – 1136
62. Abd‐Alla, G. H., Energy Conversion and Management, 2002, 43, 1027 – 1042
63. Heck, R. M., Catalysis Today, 1999, 53, 519 – 523
64. MassimoColombo, IsabellaNova, EnricoTronconi, Catalysis Today, 2010, 151, 223-230
65. Tie Yu, Teng Hao, Dequan Fan, Jun Wang, Meiqing Shen, Wei Li, J. Phys. Chem. C, 2014, 118, 6565-6575
66. Shengen Zhang, Bolin Zhang, Bo Liu and Shuailing Sun, RSC Adv. , 2017, 7, 26226-26242
67. P. H. Calderbank, K. Chandrasekharan and C. Fumagalli, Chemical Engineering Science, 1977, 32, 1435-1443.
68. Ferenc Lónyi, József Valyon, Microporous and Mesoporous Materials, 2001, 47, 293-301
校內:2023-01-01公開