| 研究生: |
陳伯辰 Chen, Bo-Chen |
|---|---|
| 論文名稱: |
常壓非熱平衡電漿處理對可產生黃麴毒素之真菌及其宿主的影響 Effects of atmospheric pressure non-thermal plasma treatments on aflatoxigenic fungi and its host |
| 指導教授: |
向克強
Shaing, Ker-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 電漿處理 、黃麴毒素 、真菌 |
| 外文關鍵詞: | plasma treatments, aflatoxin, fungi |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗之目的在於試驗常壓非熱平衡態電漿處理對於預防可產生黃麴毒素之真菌感染的效用。電漿中含有帶電粒子、電場、自由基和紫外線等成分,而這些成分都有能力在非熱平衡態電漿處理時與處理表面引起不同的化學或物理效應。在本實驗中,實驗樣本接受不同時間及不同氣體組成的非直接接觸電漿處理,非直接接觸處理也就表示僅有由電漿處理所引起的遠距離效應能被觀察到。在電漿源方面,本實驗所使用之電漿是由介電質放電的方式產生。而放電中所使用的氣體為空氣和一為 97%氦氣與 3%氧氣所混和而成之氣體。在電漿處理過後,樣本之真菌感染情形可藉由照片記錄所觀察出,而產生黃麴毒素與否可藉由紫外線螢光法所做出的定性檢測確認。而實驗結果顯示出,不論是由空氣電漿或是由氦氧混和氣體電漿所產生之遠距離效應皆增強了真菌的成長速率。此同時表示,接受過非直接接觸電漿處理之樣本的真菌成長速率較未接受過電漿處理的控制組顯著。最後再由黃麴毒素定性檢測的結果來確認生長在樣本上之真菌確實是可產生黃麴毒素之真菌。
This experiment tests the ability of atmospheric pressure non-thermal plasma treatments in the prevention of aflatoxigenic fungi infection. There are charged particles, electric field, radicals and UV light inside plasmas and these elements might trigger different physical or chemical effects during non-thermal plasma treatments. In this experiment, the experimental samples received indirect plasma treatments with different time duration and gas compositions which mean only the remote effects caused by plasma treatments could be seen. In this work, plasmas were produced by dielectric barrier discharge method. The operation gases were air and a mixed gas of 97% He and 3% O2. After plasma treatments, fungi growth rate was observed by taking pictures and the existence of aflatoxin was qualitatively detected by black light method. The final results show that the radicals in both He/O2 and air plasma might facilitate fungi growth rate which means peanuts received indirect plasma treatments grew fungi faster than control group. The outcomes of aflatoxin detection also show that the fungi grown on all the sample are aflatoxigenic fungi.
[1] Lieberman, M. A., & Lichtenberg, A. J. (2005). Principles of plasma discharges and materials processing (2nd ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.
[2] Gadri, R. B., Roth, J. R., Montie, T. C., Kelly-Wintenberg, K., Tsai, P. P. Y., Helfritch, D. J., ... & Team, U. P. S. (2000). Sterilization and plasma processing of room temperature surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surface and Coatings Technology, 131(1), 528-541.
[3] Goree, J., Liu, B., Drake, D., & Stoffels, E. (2006). Killing of S. mutans bacteria using a plasma needle at atmospheric pressure. Plasma Science, IEEE Transactions on, 34(4), 1317-1324.
[4] Laroussi, M., Tendero, C., Lu, X., Alla, S., & Hynes, W. L. (2006). Inactivation of bacteria by the plasma pencil. Plasma Processes and Polymers, 3(6‐7), 470-473.
[5] Köritzer, J., Boxhammer, V., Schäfer, A., Shimizu, T., Klämpfl, T. G., Li, Y. F., ... & Schlegel, J. (2013). Restoration of sensitivity in chemo—resistant glioma cells by cold atmospheric plasma. PLoS one, 8(5), e64498.
[6] Brullé, L., Vandamme, M., Riès, D., Martel, E., Robert, E., Lerondel, S., ... & Le Pape, A. (2012). Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS One, 7(12), e52653.
[7] Fridman, A., & Friedman, G. (2012). Plasma medicine. John Wiley & Sons.
[8] Graves, D. B. (2014). Low temperature plasma biomedicine: A tutorial reviewa).Physics of Plasmas (1994-present), 21(8), 080901.
[9] Von Woedtke, T., Metelmann, H. R., & Weltmann, K. D. (2014). Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contributions to Plasma Physics, 54(2), 104-117.
[10] Goldblatt, L. (Ed.). (2012). Aflatoxin: scientific background, control, and implications. Elsevier.
[11] Wang, L. Y., Hatch, M., Chen, C. J., Levin, B., You, S. L., Lu, S. N., ... & Santella, R. M. (1996). Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan. International journal of cancer, 67(5), 620-625.
[12] Amla, I., Kumari, S., Murthy, V. S., Jayaraj, P., & Parpia, H. A. B. (1970). Role of aflatoxin in Indian childhood cirrhosis.(A preliminary communication.). Indian pediatrics, 7, 262-270.
[13] Raizer, Y. P., & Allen, J. E. (1991). Gas discharge physics (Vol. 1). Berlin: Springer-Verlag.
[14] Kunhardt, E. E. (1980). Electrical breakdown of gases: The prebreakdown stage. Plasma Science, IEEE Transactions on, 8(3), 130-138.
[15] Van de Sanden, M. C. M., Schram, P. P. J. M., Peeters, A. G., Van der Mullen, J. A. M., & Kroesen, G. M. W. (1989). Thermodynamic generalization of the Saha equation for a two-temperature plasma. Physical Review A, 40(9), 5273.
[16] Chang, J. S., Lawless, P. A., & Yamamoto, T. (1991). Corona discharge processes. Plasma Science, IEEE Transactions on, 19(6), 1152-1166.
[17] Sladek, R. E., Stoffels, E., Walraven, R., Tielbeek, P. J., & Koolhoven, R. A. (2004). Plasma treatment of dental cavities: a feasibility study. Plasma Science, IEEE Transactions on, 32(4), 1540-1543.
[18] Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma chemistry and plasma processing,23(1), 1-46.
[19] Massines, F., & Gouda, G. (1998). A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. Journal of Physics D: Applied Physics, 31(24), 3411.
[20] Yokoyama, T., Kogoma, M., Moriwaki, T., & Okazaki, S. (1990). The mechanism of the stabilisation of glow plasma at atmospheric pressure.Journal of Physics D: Applied Physics, 23(8), 1125.
[21] Chu, P. K., & Lu, X. (Eds.). (2013). Low temperature plasma technology: methods and applications. CRC Press.
[22] Laroussi, M., Alexeff, I., Richardson, J. P., & Dyer, F. F. (2002). The resistive barrier discharge. Plasma Science, IEEE Transactions on, 30(1), 158-159.
[23] Diener, U. L., & Davis, N. D. (1967). Limiting temperature and relative humidity for growth and production of aflatoxin and free fatty acids byAspergillus flavus in sterile peanuts. Journal of the American Oil Chemists Society, 44(4), 259-263.
[24] Cotty, P. J., & Jaime-Garcia, R. (2007). Influences of climate on aflatoxin producing fungi and aflatoxin contamination. International Journal of Food Microbiology, 119(1), 109-115.
[25] Nielsen, K. F., Holm, G., Uttrup, L. P., & Nielsen, P. A. (2004). Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration & Biodegradation, 54(4), 325-336.
[26] Espinosa-Calderón, A., Torres-Pacheco, I., Millán-Almaraz, J. R., Contreras-Medina, L. M., Muñoz-Huerta, R. F., & González, R. G. G. (2011). Methods for detection and quantification of aflatoxins. INTECH Open Access Publisher.
[27] Abbas, H. K., Zablotowicz, R. M., Weaver, M. A., Horn, B. W., Xie, W., & Shier, W. T. (2004). Comparison of cultural and analytical methods for determination of aflatoxin production by Mississippi Delta Aspergillus isolates.Canadian journal of microbiology, 50(3), 193-199.
[28] Townsend discharge. n.d. In Wikipedia. Retrieved April 10, 2015, from http://en.wikipedia.org/wiki/Townsend_discharge
[29] Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., & Hicks, R. F. (1998). The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Science, IEEE Transactions on, 26(6), 1685-1694.
[30] Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma chemistry and plasma processing,23(1), 1-46.
[31] Tsukamoto, S., Maeda, T., Ikeda, M., & Akiyama, H. (2003, June). Application of pulsed power to mushroom culturing. In Pulsed Power Conference, 2003. Digest of Technical Papers. PPC-2003. 14th IEEE International (Vol. 2, pp. 1116-1119). IEEE.ISO 690
[32] Tonks, L. (1967). The birth of “plasma”. American Journal of Physics, 35(9), 857-858.