| 研究生: |
李明 Li, Min |
|---|---|
| 論文名稱: |
奈米粒子應用於聚合酶反應、細胞轉殖與細胞觀察技術之研究 Study on the Nanoparticles Applied in Polymerase Chain Reaction, Gene Transfection and Cell Detection |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 聚合酶反應 、奈米量子點 、奈米粒子 、微機電系統 、基因轉殖 、胞膜電穿孔 |
| 外文關鍵詞: | Au colloid, MEMS, Electroporation, PCR, CdSe/ZnS |
| 相關次數: | 點閱:136 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討奈米粒子的生物應用,利用各型奈米粒子如,金奈米粒子、氧化鐵(Gamma-Fe2O3)奈米粒子與奈米量子點進行實驗,尋求增進核苷酸複製與轉殖的方法和細胞轉殖的現象。論文中以微機電製程技術與合成不同之奈米粒子,為實驗技術的主軸。研究先從討論金奈米粒子增進核苷酸在聚合酶反應的複製效率,進而探討如何以磁奈米粒子操控增進核苷酸轉殖效率。為瞭解轉殖現象,最後藉由奈米量子點之光學效應,研究胞膜電穿孔轉殖與細胞吞噬現象,與電子顯微技術交相驗證,完成系統性的探討。
在奈米粒子增進聚合酶效率方面,以不同粒徑、成分之奈米粒子調製聚合酶配方,藉由溫層與時間的調配研究奈米粒子增進效果。並探索不同生物樣本之反應,如不同長短之核苷酸片段(173~1236 bp)與不同來源之樣品差異(組織與細胞)等。結果發現,奈米粒子能有助於縮短反應時間與提升低成本Taq酵素的效率,即使不同來源的核苷酸樣品也都發現增進的效果。此外,溫度升降速率之快慢,也會影響金奈米粒子增進反應的效率,溫度升降速率越快,金奈米粒子增進反應的效率越佳。在金原子等濃度狀況下,金奈米粒子對於聚合酶反應是粒徑越小反應越好,奈米粒子比較方面,而氧化鐵(Gamma-Fe2O3)奈米粒子經實驗證明和金奈米粒子一樣,有增進聚合酶反應效率的功能。
氧化鐵(Gamma-Fe2O3)奈米粒子操控核苷酸研究方面,增進了微型胞膜電穿孔轉殖晶片的轉殖率與操控性中,在未經任何接合步驟的氧化鐵(Gamma-Fe2O3)奈米粒子與核苷酸,於非對稱的磁場吸引下,氧化鐵(Gamma-Fe2O3)奈米粒子的分佈與轉殖後的螢光分佈十分一致,證明了氧化鐵(Gamma-Fe2O3)奈米粒子對核苷酸確實有牽引的作用。對於奈米粒子於轉殖中,如何進入細胞與作用機制為何?論文中也以電子顯微技術與共軛聚焦顯微鏡,對奈米粒子進入細胞之機制加以分析。並利用自行合成的奈米量子點CdSe/ZnS配合光學顯微鏡系統,成功了解奈米粒子進入細胞的機制與反應,分析過程也討論細胞吞噬作用與胞膜電穿孔法兩者對傳送奈米粒子的機制與胞器之關係。
綜合而言,奈米粒子應用於增進核苷酸複製與細胞轉殖效果良好。而其後轉殖現象的探討,由於奈米量子點的加入,所建立的光學追蹤方式,更便利於現象的分析,因此探討奈米粒子應用於細胞與核苷酸則是本篇論文研究之主軸。
In this study, we focused on how the Bio-MEMS and the nanotechnology were used to improve the amplification and transfection of nucleotide. For this study, different kind of nanoparticles, -Fe2O3, gold colloids and quantum dots (CdSe/ZnS), were synthesized and an electroporation microchip was fabricated by MEMS technology. We desired the special physical properties (thermal, magnetic and photochronic) of nanoparticles could be used and controlled in the biological applications with microchips.
Three parts of bio-molecular applications using nanoparticles are discussed in this study: first, what function should be considering about the nanoparticles in enhancing the efficiency of a polymerase chain reaction. We hypothesized and discussed the thermal dispersion, catalysis effect and steric stabilization of nanoparticles could help the mixture of polymerase chain reaction (PCR) to increase the PCR efficiency. In this study, 5-40 nm gold colloids were added into the polymerase chain reaction. To demonstrate that the Au nanoparticles can be used freely to the PCR reaction, different PCR systems, DNA polymerases, DNA sizes and complex samples were studied. Our results demonstrate that Au nanoparticles can result in 5-10 fold increase of PCR detection sensitivity in conventional PCR and 104 fold increase in real-time PCR at least. They decrease the reaction time of PCR by 2/3rd in the PCR systems. Second, the DNA associated with magnetic nanoparticles in electroporation process was discussed. The magnetic nanoparticles (5 nm -Fe2O3) can be attracted to specific areas of cell surfaces under magnetic fields, which highly increased the DNA concentration at specific areas and further enhanced the gene transfection in an electroporation method. Compared with the electroporation with and without electrostatic attracting force, the magneto-electroporation with magnetic attracting force showed higher delivery rate (63.05%) in the electroporation processes. This part focuses on the enhancement and targeting of gene transfection using 5 nm -Fe2O3 nanoparticles and electroporation microchips. The last part shows the cellular organelles and the pathway of nanoparticles delivered by electroporation and pinocytosis in living cells. For tracing and observing the quantum dots, the cellular organelles (nucleus, mitochondria and Golgi complex) and cell membrane were labeled with different conventional organic fluorescent dyes to help the CdSe/ZnS detection. Based on the results of the TEM and confocal microscopy, we could summarize four important points. First, the electroporation method provided more quantum dots transport and faster delivery than the pinocytosis method. Second, different pathways were found; the quantum dots delivered by the electroporation were dispersed randomly in the cellular cytoplasm. Third, the fluorescence intensity of the quantum dots was stronger than that of conventional organic dyes and the emission time of the quantum dots was longer. Fourth, in both the electroporation and pinocytosis methods, the quantum dots were found in the nuclear membrane.
In a summary, nanoparticles and Bio-MEMS can offer a lot of new methods to improve the detection ability of molecular biotechnology. Especially, they can be developed for controlling the weak physical force and field.
1.P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastmen, ” Mechanism of heat flow in suspension of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, 45, 855-863, 2002.
2.M. Hu, and G. V. Hartland, “Heat dissipation for Au particles in aqueous solution: relaxation time versus size,” Journal of Physical Chemistry Part B, 106, 7029-7033, 2002.
3.Y. Xuan, and Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Flow, 21, 58-64, 2000.
4.J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, 78, 718-720, 2001.
5.J. Cheng, and L. J. Kricka, “Biochip technology,” Harwood Academic Publishers, Philadelphia, 176-178, 2001.
6.J. Brownie, S. Shawcross, J. Theaker, D. Whitcombe, R. Ferrie, C. Newton, and S. Little, “The elimination of primer-dimer accumulation in PCR,” Nucleic Acids Research, 25, 3235-3241, 1997.
7.D. Whitcombe, J. Theaker, S. P. Guy, T. Brown, and S. Little, “Detection of PCR products using self-probing amplicons and fluorescence,” Nature Biotechnology, 17, 804-808, 1999.
8.W. M. Freeman, S. J. Walker, and K. E. Vrana, “Quantitative RT-PCR: pitfalls and potential,” Biotechniques, 26, 112-125, 1999.
9.C. B. Smits, M. C. Van, R. D. Glas, D. A. L. Gee, T. Dijkstrab, O. J. T. Van, and F. A. Rijsewijk, ”Comparison of three polymerase chain reaction methods for routine detection of bovine herpesvirus 1 DNA in fresh bull semen,” Journal of Virological Methods, 85, 65-73, 2000.
10.K. B. Mullis, and F. A. Faloona, “Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction,” Methods in Enzymology, 155, 335-350, 1987.
11.M. Husmann, Y. Dragneva, E. Romahn, and P. Jehnichen, “Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation,” Biochemical Journal, 352, 763-772, 2000.
12.M. R. Charles, “Quantifying gene expression,” Molecular Biology, 4, 93-100, 2002.
13.S. Das, S. C. Mohapatra, and J. T. Hsu, “Studies on primer-dimer formation in polymerase chain reaction (PCR),” Biotechnology Techniques, 13, 643-646, 1999.
14.J. Berg, V. Nagl, G. Muhlbauer, and H. Stekel, “A single-tube two-round polymerase chain reaction using the LightCycler™ instrument,” Journal of Clinical Virology, 20, 71-75, 2001.
15.M. S. Ibrahim, R. S. Lofts, P. B. Jahrling, E. A. Henchal, V. W. Weedn, M. A. Northrup, and P. Belgrader, ”Real-time microchip PCR for detecting single-base differences in viral and human DNA,” Journal of the American Chemical Society,70, 2013-20179, 1998.
16.E. T. Lagally, P. C. Simpson, and R. A. Mathies, “Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system,” Sensors and Actuators B, 63, 138-146, 2000.
17.F. Chen, B. Binder, and R. E. Hodson, “Flow cytometric detection of specific gene expression in prokaryotic cells using in situ RT-PCR”, The Federation of European Microbiological Societies, 184, 291-295, 2000.
18.Y. Moreno, M. Hernandez, M. A. Ferrus, J. L. Alonso, S. Botella, R. Montes, and J. Hernandez, “Direct detection of thermotolerant campylobacters in chicken products by PCR and in situ hybridization,” Research in Microbiology, 152, 577-582, 2001.
19.Y. C. Lin, M. Y. Huang, K. C. Young, T. T. Chang, and C. T. Wu, “A rapid micro-PCR system for hepatitis C virus amplification,” Sensors and Actuators B, 71, 2-8, 2000.
20.M. A. Hayat, “Colloidal gold, principle, methods and applications,” Academic Press Incorporated, 1, 13-31, 1989.
21.J. Vacik, B. S. Dean, W. E. Zimmer, and D. A. Dean, “Cell-specific nuclear import of plasmid DNA,” Gene Therapy, 6, 1006–1014, 1999.
22.K. R. Smith, “Gene therapy: the potential applicability of gene transfer technology to the human germline,” International Journal of Medical Sciences, 1, 76-97, 2004.
23.M. Budryk, T. Cichoñ, and S. Szala, “Direct in vivo transfer of plasmid DNA into murine tumors: Effects of endotoxin presence and transgene localization,” Acta Biochimica Polonica, 48, 795-800, 2001.
24.Y. P. Xing, Z. H. Huang, S. X. Wang, J. Cai, J. Li, T. H. Chou, and S. Lu, “Novel DNA vaccine based on hepatitis B virus core gene induces specific immune responses in Balb/c mice,” World Journal of Gastroenterology, 11, 4583-4586, 2005.
25.D. C. Chang, B. M. Chassy, J. A. Saunders, and A. E. Sowers, “Guide to electroporation and electrofusion,” Academic Press Incorporated, New York, 29-34, 1992.
26.J. M. Perez, F. J. Simeone, Y. Saeki, J. Lee, and R. Weissleder, ” Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media,” Journal of the American Chemical Society, 125, 10192-10193, 2003.
27.J. M. Perez, O. Terence, F. J. Simeone, R. Weissleder, and J. Lee, ” DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents,” Journal of the American Chemical Society, 124, 9-12, 2002.
28.Y. C. Lin, C. M. Jen, M. Y. Huang, and X. Z. Lin, “Electroporation microchips for continuous gene transfection,” Sensors and Actuators B, 79, 137-141, 2001.
29.C. P. Jen, Y. H. Chen, C. S. Fan, C. S. Yeh, Y. C. Lin, D. B. Shieh, C. L. Wu, D. H. Chen, and C. H. Chou, “Nonviral transfection approach in vitro: the design of a gold nanoparticle vector joint with microelectromechanical systems,” Langmuir, 20, 1369-1374, 2004.
30.D. Luo, “Method of enhancing the delivery of nucleic acids using silica nanoparticle,” U.S Patent, US 6319715 B1, 2001.
31.F. Scherer, “Magnetofection: enhancing and target gene delivery by magnetic force in vitro and in vivo,” Gene Therapy, 9, 102–109, 2002.
32.M. Li, Y. C. Lin, and K. C. Su, ”Magnetic nanoparticles used for enhancement and targeting of gene transfection in magneto-electroporation microchips,” Material Science Forum, 505, 661-666, 2006.
33.Z. A. Peng, and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” Journal of the American Chemical Society, 123, 183-184, 2001.
34.J. Aldana, Y, A. Wang, and X. Peng, “Photochemical instability of CdSe nanocrystal coated by hydrophilic thiols,” Journal American Chemistry Science, 123, 8844-8850, 2001.
35.J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nature Biotechnology, 21, 47-51, 2003.
36.F. Chen, and D. Gerion, “Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living Cells,” Nano Letters, 4, 1827-1832, 2004.
37.R. Heim, A. B. Cubitt, and R. Y. Tsien, “Improved green fluorescence,” Nature, 373, 663-664, 1995.
38.D. C. Prasher, “Using GFP to see the light,” Trends in Genetics, 11, 320-323, 1995.
39.W. Neupert, “Protein import into mitochondria,” Annual Review of Biochemistry, 66, 863-917, 1997.
40.S. A. Adam, “Transport pathways of macromolecules between the nucleus and the cytoplasm,” Current Opinion in Cell Bbiology, 11, 402-406, 1999.
41.I. Mellman, and G. Warren, “The road taken: past and future foundations of membrane traffic,” Cell, 100, 99-112, 2000.
42.J. Klumperman, “Transport between ER and Golgi,” Current Opinion in Cell Bbiology, 12, 445-449, 2000.
43.B. Baudouy, “Kapitza resistance and thermal conductivity of kapton in superfluid helium,” Cryogenics, 43, 667-672, 2003.
44.H. S. Yang, G. R. Bai, L. J. Thompson, and J. A. Eastman, “Interfacial thermal resistance in nanocrystalline yttria-stabilized Zirconia,” Acta Materialia, 50, 2309-2317, 2002.
45.H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2, and TiO2 ultrafine particles,” Netsu Bussei, 4, 227-233, 1993.
46.J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompon, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, 78, 718-721, 2001.
47.R. B. Craig, and P. Mulvaney, “Nucleation and growth kinetics of CdSe nanocrystals in octadecene,” Nano Letters, 4, 2303-2307, 2004.
48."Wikipedia, the free encyclopedia," Wikimedia Foundation, Inc., en.wikipedia.org/wiki/Stokes_shift, Begun, 2001.
49.R. K. Saiki, P. S. Walsh, C. H. Levenson, and H. A. Erlich, “Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes,” Proceedings of the National Academy of Sciences, 86, 6230-6234, 1989.
50.“LightCycler operator’s manual version 3.5,” Roche, Chapter A, 15, 2004.
51.J. L. Carpentier, P. Gorden, M. Amherdt, E. V. Obberghen, R. Kahn, and L. Orci, “125I-insulin binding to cultured human lymphocytes: initial localization and fate of hormone determined by quantitative electron microscopic autoradiography,” The Journal Clinical Investigation, 61, 1057-1070, 1978.
52.J. L. Carpentier, P. Gorden, P. Freychet, A. L. Cam, and L. Orci, “Lysosomal association of internalized 125I-insulin in isolated rat hepatocytes direct demonstration by quantitative electron microscopic autoradiography,” The Journal Clinical Investigation, 63, 1249–1261, 1979.
53.N. W. Andrews, “Regulated secretion of conventional lysosomes,” Trends in Cell Biology, 10, 316-321, 2000.
54.P. Alivisatos, “Biologists join the dots,” Nature, 413, 450-453, 2001.
55.T. Kotnik, and D. Miklavcic, “Analytical description of transmembrane voltage induced by electric fieldson spheroidal cells,” Biophysical Journal, 79, 670-679, 2000.
56.P. T. Gaynor, and P. S. Bodger, ”Ionisation of dielectric spheroid membranes: a balloon model of electroporation of biological,” Measurement and Technology, 141, 3-10, 1994.
57.S. M. Cooper, “Gap junction increase the sensitivity of tissue cells to exogenous electric field,” Journal of Theoretical Biology, 111, 123-130, 1984.
58.M. A. Hayat, “Colloidal gold principles, methods and applications,” Academic Press Incorporated, New York, 1, 13-31, 1989.
59.C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, 115, 8706-8715, 1993.
60.M. A. Hines, and P. G. Sionnest, “Synthesis and characterization of strongly luminescing layered semiconductor nanoclusters ( (CdSe)ZnS ),” Journal of Physical Chemistry, 100, 468-471, 1996.
61.C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assembles,” Annual Review Materials Science, 30, 545-610, 2000.
62.“SYBR® Green PCR and RT-PCR reagents,” Applied Biosystems, Protocol, Chapter 1, 3, 2001.
63.H. Li, and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proceedings of the National Academy of Sciences, 101, 14036-14039, 2004.
64.E. Dulkeith, M. Ringler, T. A. Klar, and J. Feldmann, ”Gold nanoparticles quench fluorescence by phase induced radiative rate suppression,” Nano Letters, 5, 585-589, 2005.
65.G. Schmid, “Clusters and colloids,” VCH Publisher Incorporated, New York, 461-469, 1994.
66.M. Chalfie, Y. G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, 263, 802-805, 1994.
67.Y. C. Lin, M. Li, and C. C. Wu, “Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement,” Lab on a Chip, 4, 104 -108, 2004.
68.S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker, “Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer,” The Journal of Gene Medicine, 6, 923-936, 2004.
69.S, W. Gersting, U. Schillinger, J. Lausier, P. Nicklaus, C. Rudolph, C. Plank, D. Reinhardt, and J. Rosenecker, “Gene delivery to respiratory epithelial cells by magnetofection,” The Journal of Gene Medicine, 6, 913-922, 2004.
70.C. Y. Tsai, A. L. Shiau, P. C. Cheng, D. B. Shieh, D. H. Chen, C. H. Chou, C. S. Yeh, and C. L. Wu, “A biological strategy for fabrication of Au/EGFP nanoparticle conjugates retaining bioactivity,” Nano Letters, 4, 1209-1212, 2004.
71.B. Albert, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, “Molecular biology of the cell,” Garland Publishing Incorporated, Second edition, New York, 1989.
72.陳家全、楊瑞森、李家維,「生物電子顯微鏡學」,國科會科普叢書系列,4-17頁,1990年。
73.W. Guo, J. J. Li, Y. A. Wang, and X. Peng, “Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability,” Journal of the American Chemical Society, 125, 3901-3909, 2003.
74.F. Tokumasu, and J. Dvorak, “Development and application of quantum dots for immunocytochemistry of human erythrocytes,” Journal of Microscopy, 211, 256–261, 2003.
75.A. Y. Nazzal, L. Qu, X. Peng, and M. Xiao, “Photoactived CdSe nanocrystals as nanosensors for gases,” Nano Letters, 3, 819-822, 2003.
76.W. U. Huynh, J. J. Dittmer, and A. P. Alivisatoss, “Hybrid polymer solar cells,” Science, 295, 2425-2428, 2002.
77.X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Beuchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular target with semiconductor quantum dots,” Nature Biotechnology, 21, 41-47, 2002.
78.R. Weissleder, and V. Ntziachistos, “Shedding light onto live molecular targets,” Nature Medicine, 9, 123-129, 2003.
79.B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipids,” Science, 298, 1759-1763, 2002.
80.D. S. Lidke, P. Nagy, R. Heintzmann, D. J. A. Jovin, J. N. Post, H. E. Grecco, E. A. J. Erijman, and T. M. Jovin, “Quantum dot ligands provide new insight into erbB/HER receptor-mediated signal transduction,” Nature Biotechnology, 22, 199-125, 2004.
81.M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proceedings of the National Academy of Sciences, 99, 12617-12621, 2002.