| 研究生: |
丁照緯 Ting, Chao-Wei |
|---|---|
| 論文名稱: |
無添加催化劑熱蒸鍍法合成單晶WO3-X奈米線與其物理性質之研究 Catalyst-Free Synthesis of Single-Crystalline WO3-x Nanowires via Thermal Evaporation and Their Physical Properties |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 氧化鎢奈米線 、熱蒸鍍法 、氧空缺 、電性量測 、磁學性質 、可見光光催化 |
| 外文關鍵詞: | WO3-x nanowires, thermal evaporation, oxygen vacancy, antiferromagnetic |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用以晶粒成核長線配合高載流氣體的熱蒸鍍方法在相對高壓環境下以WO3粉末為前驅物在無鍍金的矽基板長出特殊的氧化鎢奈米線,並探討生長參數對其形貌與性質的影響,後續再利用各式儀器對樣品進行分析,先以XRD、TEM、XPS確認其晶相結構與組成比例,發現以此法長出之氧化鎢奈米線帶有大量的氧空缺是少見以五價鎢為主要鍵結形式的氧化鎢化合物其比例約為5:13,物理性質與常見的三氧化鎢有極大的不同,電性部分有較低的電阻率7.03 x 10-4 Ω ‧ cm,在可見光光降解上也極具應用潛力,且由缺陷誘發磁性產生與塊材氧化鎢之順磁性和三氧化鎢奈米線抗磁性特性不同的反鐵磁性,此外本實驗亦使用鎢基板討論不同成長溫度合成的氧化鎢奈米線結構與性質的差異,發現在較低溫生長的氧化鎢奈米線帶有許多剪力缺陷而高溫環境生長的氧化鎢奈米線有較佳的晶格排列,在電性方面高溫生長的奈米線有較優良的導電度8.77 x 10-3 Ω ‧ cm,但在可見光光降解的應用上低溫合成的氧化鎢奈米線效率較佳,由本實驗可知缺陷對氧化鎢奈米線之物性影響與其適合的應用面。
In our study, oxygen-vacancy-rich tungsten oxide nanowires were synthesized on Si via grain-by-grain thermal evaporation method without any catalyst; also, WO3-x nanowires were grown on W foil as comparison on their physical properties and growth mechanism. In the SEM cross-section images, we have clearly found that there is no thin film formation in the growth mechanism of tungsten oxide grown on Si. It shows that this process is a new grain-by-grain thermal evaporation method which nanowires grown from the previously deposited tiny nanoparticles. Surprisingly, the oxygen-vacancy-rich tungsten oxide nanowires grown on Si were found to have unusual W5+ dominated energy bond and the ratio of tungsten to oxygen was about 5:13 based on XPS analysis. TEM studies show that the lattice arrays of oxygen-vacancy-rich tungsten oxide nanowires grown on Si were crystalline, while those of WO3-x nanowires grown on W foil were improved in terms of crystallization with increase of growth temperature. We demonstrated this result with XRD analysis as well. For physical property measurements, the oxygen-vacancy-rich nanowire grown on Si had a very low resistivity of 7.03 x 10-4 Ω ‧ cm, while the resistivity of WO3-x nanowires grown on W decreased as the growth temperature rises. Additionally, we found that WO3-x nanowires exhibit different magnetic properties depending on the valence state of tungsten. Notably, the oxygen-vacancy-rich tungsten oxide nanowires grown on Si possessed special antiferromagnetic properties. For visible light photocatalytic applications, the WO3-x nanowires grown on W at the lowest temperature have the best degradation efficiency to methylene blue solution.
1. Zhu, Q., C. Huang, and H. Lu, Review on Preparation and Application of WO3 Nanomaterials. 2017.
2. Senthil, K. and K. Yong, Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing. Nanotechnology, 2007. 18(39): p. 395604.
3. Baek, Y. and K. Yong, Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. The Journal of Physical Chemistry C, 2007. 111(3): p. 1213-1218.
4. Hong, K., et al., Synthesizing tungsten oxide nanowires by a thermal evaporation method. Applied physics letters, 2007. 90(17): p. 173121.
5. Ha, J.-H., P. Muralidharan, and D.K. Kim, Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. Journal of Alloys and Compounds, 2009. 475(1-2): p. 446-451.
6. Hua-Jun, Y., et al., Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires. Chinese Physics B, 2011. 20(3): p. 036103.
7. Song, H., et al., Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 2015. 166: p. 112-120.
8. Hong, K., M. Xie, and H. Wu, Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology, 2006. 17(19): p. 4830.
9. Cao, B., et al., Growth of monoclinic WO 3 nanowire array for highly sensitive NO 2 detection. Journal of Materials Chemistry, 2009. 19(16): p. 2323-2327.
10. Gu, G., et al., Tungsten oxide nanowires on tungsten substrates. Nano Letters, 2002. 2(8): p. 849-851.
11. Chen, G., et al. Growth of tungsten oxide nanowires using simple thermal heating. in Emerging Technologies-Nanoelectronics, 2006 IEEE Conference on. 2006. IEEE.
12. Chen, C.-H., et al., The influence of oxygen content in the sputtering gas on the self-synthesis of tungsten oxide nanowires on sputter-deposited tungsten films. Nanotechnology, 2005. 17(1): p. 217.
13. Johansson, M.B., et al., Optical properties of nanocrystalline WO3 and WO3-x thin films prepared by DC magnetron sputtering. Journal of Applied Physics, 2014. 115(21): p. 213510.
14. Xiao, Z., et al., Fabrication and structural characterization of porous tungsten oxide nanowires. Nanotechnology, 2005. 16(11): p. 2647.
15. Xin, G., W. Guo, and T. Ma, Effect of annealing temperature on the photocatalytic activity of WO3 for O2 evolution. Applied Surface Science, 2009. 256(1): p. 165-169.
16. Zheng, H., et al., Nanostructured tungsten oxide–properties, synthesis, and applications. Advanced Functional Materials, 2011. 21(12): p. 2175-2196.
17. Chang, M.T., et al., Nitrogen‐Doped Tungsten Oxide Nanowires: Low‐Temperature Synthesis on Si, and Electrical, Optical, and Field‐Emission Properties. small, 2007. 3(4): p. 658-664.
18. Zheng, F., M. Guo, and M. Zhang, Hydrothermal preparation and optical properties of orientation-controlled WO 3 nanorod arrays on ITO substrates. CrystEngComm, 2013. 15(2): p. 277-284.
19. Widiyandari, H., et al. Optical properties and photocatalytic activities of tungsten oxide (WO3) with platinum co-catalyst addition. in AIP Conference Proceedings. 2016. AIP Publishing.
20. Fukushi, D., et al., Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase. Microelectronics Reliability, 2017. 79: p. 1-4.
21. Firdaus, I., A. Purwanto, and H. Widiyandari, The Immobilization of Pt/WO3 on the Glass Substrate for Methylene Blue Degradation. Advanced Materials Research, 2015. 1112: p. 188.
22. Gubbala, S., J. Thangala, and M. Sunkara, Nanowire-based electrochromic devices. Solar energy materials and solar cells, 2007. 91(9): p. 813-820.
23. Liao, C.-C., F.-R. Chen, and J.-J. Kai, WO3− x nanowires based electrochromic devices. Solar energy materials and solar cells, 2006. 90(7-8): p. 1147-1155.
24. Tomchenko, A., V. Khatko, and I. Emelianov, WO3 thick-film gas sensors. Sensors and Actuators B: Chemical, 1998. 46(1): p. 8-14.
25. Tao, W.-H. and C.-H. Tsai, H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sensors and Actuators B: Chemical, 2002. 81(2-3): p. 237-247.
26. Akiyama, M., et al., Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chemistry Letters, 1991. 20(9): p. 1611-1614.
27. Kim, Y.S., et al., Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Applied Physics Letters, 2005. 86(21): p. 213105.
28. Chakrapani, V., et al., Modulation of stoichiometry, morphology and composition of transition metal oxide nanostructures through hot wire chemical vapor deposition. Journal of Materials Research, 2016. 31(1): p. 17-27.
29. Wang, Q., A. Puntambekar, and V. Chakrapani, Vacancy-induced semiconductor–insulator–metal transitions in nonstoichiometric nickel and tungsten oxides. Nano letters, 2016. 16(11): p. 7067-7077.
30. Xie, F., et al., XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 2012. 185(3-4): p. 112-118.
31. Esquinazi, P., et al., Defect-induced magnetism in solids. IEEE Transactions on Magnetics, 2013. 49(8): p. 4668-4674.
校內:不公開